Деление клетки мейоз таблица. Краткое описание стадий и схемы деления клеток посредством мейоза. Сравнение процессов митоза и мейоза

Развитие и рост живых организмов невозможен без процесса деления клеток. В природе существует несколько видов и способов деления. В данной статье мы кратко и понятно расскажем о митозе и мейозе, разъясним основное значение этих процессов, познакомим с тем, чем отличаются они, а чем схожи.

Митоз

Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых клеток, а именно мышечных, нервных, эпителиальных и прочих.

Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса - равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения один к одному схожи с материнскими.

Рис. 1. Схема митоза

Время между процессами деления называются интерфазой . Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:

  • синтез белка и молекулы АТФ в клетке;
  • удваивание хромосом и образование двух сестринских хроматид;
  • увеличение числа органоидов в цитоплазме.

Мейоз

Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.

ТОП-4 статьи которые читают вместе с этой

Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.

Рис. 2. Схема мейоза

Биологическим значением мейоза является образование чистых гамет, которые содержат гаплоидный, другими словами одинарный, набор хромосом. Диплоидность восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.

Уменьшение числа хромосом при мейозе очень важно, так как в противном случае при каждом делении число хромосом увеличивалось бы. Благодаря редукционному делению поддерживается постоянное число хромосом.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза. Подробнее узнать о сходствах и различиях двух процессов вы сможете в сравнительной характеристике.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Интерфаза

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Хромосомы удваиваются, образуются две хроматиды, соединённые центромерой.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе. Отличием является продолжительность, особенно при образовании яйцеклеток.

Гаплоидный набор хромосом. Синтез отсутствует.

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом происходит кроссинговер - обмен генетической информации на некоторых участках. После хромосомы расходятся.

По продолжительности - короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Метафаза

Наблюдается спирализация и расположение хромосом в экваториальной части веретена.

Аналогично митозу

Тоже, что и при митозе, только с гаплоидным набором.

Центромеры делятся на две самостоятельные хромосомы, которые расходятся к разным полюсам.

Деление центромер не происходит. К полюсам отходит одна хромосома, состоящая из двух хроматид.

Аналогично митозу, только с гаплоидным набором.

Телофаза

Цитоплазма делится на две одинаковые дочерние клетки с диплоидным набором, образуются ядерные мембраны с ядрышками. Веретено деления исчезает.

По длительности непродолжительная фаза. Гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

Цитоплазма делится. Образуется четыре гаплоидные клетки.

Рис. 3. Сравнительная схема митоза и мейоза

Что мы узнали?

В природе деление клеток отличается в зависимости от их назначения. Так, например, неполовые клетки делятся путём митоза, а половые - мейоза. Эти процессы имеют схожие схемы деления на некоторых этапах. Главным отличием является наличие числа хромосом у образованного нового поколения клеток. Так при митозе у новообразованного поколения диплоидный набор, а при мейозе гаплоидный набор хромосом. Время протекания фаз деления также отличаются. Огромную роль в жизнедеятельности организмов играют оба способа деления. Без митоза не проходит ни одно обновление старых клеток, репродукция тканей и органов. Мейоз помогает поддерживать постоянное количество хромосом в новообразованном организме при размножении.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 3417.

Тип урока: урок-обобщение.

Форма урока: практическое занятие.

  • продолжить формирование мировоззрения учащихся о непрерывности жизни;
  • познакомить с химико-биологической разницей процессов, происходящих в клетке во время митоза и мейоза;
  • формировать умение последовательно выстраивать процессы митоза и мейоза;
  • формировать навыки сравнительного анализа процессов деления клетки;

1. образовательные:

а) актуализировать знания учащихся о разных видах деления клетки (митозе, амитозе, мейозе);

б) сформировать представление о главных чертах сходства и различия между процессами митоза и мейоза, их биологической сущности;

2. воспитательная: развивать познавательный интерес к информации из разных областей науки;

3. развивающие:

а) развивать навыки работы с разными видами информации и способами её предъявления;

б) продолжить работу над развитием навыков анализировать и сравнивать процессы деления клетки;

Учебное оборудование: компьютер с мультимедийным проектором, модель-аппликация “Деление клетки. Митоз и мейоз” (демонстрационный и раздаточный комплекты); таблица “Митоз. Мейоз”.

Структура урока (занятие рассчитано на один академический час, проводится в кабинете биологии с мультимедийным проектором, рассчитано на 10 класс химико-биологического профиля). Краткий план занятия :

1. организационный момент (2 мин);

2. актуализация знаний, основных терминов и понятий, связанных с процессами деления клетки (8 мин);

3. обобщение знаний о процессах митоза и мейоза (13 мин);

4. практическая работа “Черты сходства и различия между митозом и мейозом (15 мин);

Закрепление знаний по изученной теме (5 мин);

Домашнее задание (2 мин).

Подробный конспект занятия:

1. организационный момент . Пояснение цели урока, его место в изучаемой теме, особенности проведения.

2. актуализация знаний , основных терминов и понятий, связанных с процессами деления клетки: - деление клеток;

3. обобщение знаний о процессах деления клетки:

3.1. Митоз:

Демонстрация интерактивной модели “Митоз”;

Практическая работа с моделью-аппликацией “Митоз” (раздаточный материал на каждого ученика, отработка навыка учащихся показывать последовательность процессов митоза);

Работа с моделью-аппликацией “Митоз” (демонстрационный комплект, проверка результатов практической работы)

Беседа о фазах митоза:

Фаза митоза, набор хромосом (n-хромосомы,с - ДНК) Рисунок Характеристика фазы, расположение хромосом
Профаза Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.
Метафаза Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).
Телофаза Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

3.2. Мейоз .

Демонстрация интерактивной модели “Мейоз”

Практическая работа с моделью-аппликацией “Мейоз” (раздаточный материал на каждого ученика, отработка навыка учащихся показывать последовательность процессов мейоза);

Работа с моделью-аппликацией “Мейоз” (демонстрационный комплект, проверка результатов практической работы)

Беседа о фазах мейоза:

Фаза мейоза, набор хромосом (n - хромосомы,
с - ДНК)
Рисунок Характеристика фазы, расположение хромосом
Профаза 1
2n4c
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.
Метафаза 1
2n4c
Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза 1
2n4c
Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.
Телофаза 1
в обеих клетках по 1n2c
Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.
Профаза 2
1n2c
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.
Метафаза 2
1n2c
Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза 2
2n2c
Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.
Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Беседа об изменении формулы ядра клетки

Беседа о результатах мейоза:

из одной гаплоидной материнской клетки образуется четыре гаплоидные дочерние клетки

Беседа о значении мейоза: а )поддерживает постоянное число хромосом вида из поколения в поколение (диплоидный набор хромосом каждый раз восстанавливается в ходе оплодотворения в результате слияния двух гаплоидных гамет;

б) мейоз - один из механизмов возникновения наследственной изменчивости (комбинативной изменчивости);

4. Практическая работа “Сравнение митоза и мейоза” с использованием презентации “Митоз и мейоз. Сравнительный анализ” (см. Приложение 1)

У учащихся домашние заготовки таблицы:

Отработка черт сходства между митозом и мейозом:

Отработка общих различий между митозом и мейозом (с небольшими уточнениями по фазам деления):

Сравнение Митоз Мейоз
Сходства 1.Имеют одинаковые фазы деления.
2.Перед митозом и мейозом происходит самоудвоение молекул ДНК в хромосомах (редупликация) и спирализация хромосом.
Различия 1. Одно деление. 1. Два последовательных деления.
2. В метафазе все удвоенные хромосомы выстраиваются по экватору раздельно.
3. Нет конъюгации 3. Есть конъюгация
4. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления. 4. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК.
5. Образуются две диплоидные клетки (соматические клетки). 5. Образуются четыре гаплоидные клетки (половые клетки).
6.Происходит в соматических клетках 6. происходит в созревающих половых клетках
7.Лежит в основе бесполого размножения 7.Лежит в основе полового размножения

5. Закрепление материала.

Выполнение задания части В контрольно-измерительных материалов ЕГЭ.

Соотнесите отличительные признаки и типы деления клетки:

Отличительные признаки Типы деления клеток

1. Происходит одно деление А) митоз
2. Гомологичные удвоенные хромосомы выстраиваются по экватору парами (бивалентами).
3. Нет конъюгации В) мейоз
4. Поддерживает постоянное число хромосом вида из поколения в поколение
5. Два последовательных деления.
6. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления
7. Образуются четыре гаплоидные клетки (половые клетки).
8. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК.
9. Есть конъюгация
10. Образуются две диплоидные клетки (соматические клетки)
11. В метафазе по экватору выстраиваются все удвоенные хромосомы раздельно

12. Обеспечивает бесполое размножение, регенерацию утраченных частей, замещение клеток у многоклеточных организмов

13. Обеспечивает стабильность кариотипа соматических клеток в течение всей жизни
14.Является одним из механизмов возникновения наследственной изменчивости (комбинативной изменчивости;

6. Домашнее задание:

Таблицу “Сравнение митоза и мейоза” оформить в тетради

Повторить материал о митозе и мейозе (подробно о стадиях)

29,30 (В.В.Пасечник);19,22 с.130-134 (Г.М.Дымшиц)

Подготовить таблицу “Сравнительная характеристика хода митоза и мейоза”

Сравнительная характеристика митоза и мейоза

Фазы клеточного цикла, ее итог Митоз Мейоз
I деление II деление
Интерфаза : синтез ДНК,РНК, АТФ, белков, увеличение

количества органелл,

достраивание второй хроматиды каждой хромосомы

Профаза:

а) спирализация хромосом

б) разрушение ядерной оболочки; в) разрушение ядрышек; г) формирование митотического аппарата:расхождение центриолей к полюсам клетки, образование веретена деления

Метафаза :

а) формирование экваториальной пластинки- хромосомы выстраиваются строго по экватору клетки;

б) прикрепление нитей веретена деления к центромерам;

в) к концу метафазы – начало разъединения сестринских хроматид

Анафаза:

а) завершение разделения сестринских хроматид;

б) расхождение хромосом к полюсам клетки

Телофаза – формирование дочерних клеток:

а) разрушение митотического аппарата; б) разделение цитоплазмы; в) деспирализация хромосом;

Список литературы:

1. И.Н.Пименова, А.В.Пименов – Лекции по общей биологии - Саратов, ОАО “Издательство “Лицей”, 2003 г.

2. Общая биология: учебник для 10-11 классов с углублённым изучением биологии в школе/Под ред. В.К.Шумного, Г.М.Дымшица, А.О.Рувинского. – М., “Просвещение”, 2004г.

3. Н. Грин, У.Стаут, Д. Тейлор – Биология: в 3-х томах. Т.3.: пер. с англ./Под ред. Р.Сопера. – М., “Мир”, 1993 г.

4. Т.Л.Богданова, Е.А.Солодова – Биология: справочник для старшеклассников и поступающих в вузы – М., “АСТ-ПРЕСС ШКОЛА”, 2004 г.

5. Д.И.Мамонтов – Открытая биология: полный интерактивный курс биологии (на CD)– “Физикон”, 2005 г.

О живых организмах известно, что они дышат, питаются, размножаются и погибают, в этом состоит их биологическая функция. Но за счет чего это все происходит? За счет кирпичиков - клеток, которые тоже дышат, питаются, погибают и размножаются. Но как это происходит?

О строении клеток

Дом состоит из кирпичей, блоков или бревен. Так и организм можно разделить на элементарные единицы - клетки. Все разнообразие живых существ состоит именно из них, отличие лежит лишь в их количестве и видах. Из них состоят мышцы, костная ткань, кожа, все внутренние органы - настолько сильно они различаются в своем назначении. Но вне зависимости от того, какие функции выполняет та или иная клетка, все они устроены примерно одинаково. Прежде всего, у любого "кирпичика" есть оболочка и цитоплазма с расположенными в ней органоидами. Некоторые клетки не имеют ядра, их называют прокариотическими, однако все более или менее развитые организмы состоят из эукариотических, имеющих ядро, в котором хранится генетическая информация.

Органоиды, расположенные в цитоплазме, разнообразны и интересны, они выполняют важные функции. В клетках животного происхождения выделяют эндоплазматическую сеть, рибосомы, митохондрии, комплекс Гольджи, центриоли, лизосомы и двигательные элементы. С помощью них и происходят все процессы, которые обеспечивают функционирование организма.

Жизнедеятельность клеток

Как уже было сказано, все живое питается, дышит, размножается и умирает. Это утверждение справедливо как для цельных организмов, то есть людей, животных, растений и т. д., так и для клеток. Это удивительно, но каждый "кирпичик" обладает своей собственной жизнью. За счет своих органоидов он получает и перерабатывает питательные вещества, кислород, выводит все лишнее наружу. Сама цитоплазма и эндоплазматическая сеть выполняют транспортную функцию, митохондрии отвечают в том числе за дыхание, а также обеспечение энергией. Комплекс Гольджи занимается накоплением и выводом продуктов жизнедеятельности клетки. Остальные органоиды также участвуют в сложных процессах. И на определенном этапе своего начинает делиться, то есть происходит процесс размножения. Его стоит рассмотреть более подробно.

Процесс деления клеток

Размножение - одна из стадий развития живого организма. То же относится и к клеткам. На определенном этапе жизненного цикла они входят в состояние, когда становятся готовы к размножению. просто делятся надвое, удлиняясь, а потом образовывая перегородку. Этот процесс прост и практически полностью изучен на примере палочковидных бактерий.

С все обстоит несколько сложнее. Они размножаются тремя разными способами, которые называются амитоз, митоз и мейоз. Каждый из этих путей имеет свои особенности, он присущ определенному виду клеток. Амитоз

считается самым простым, его также называют прямым бинарным делением. При нем происходит удвоение молекулы ДНК. Однако веретено деления не образуется, так что этот способ является наиболее энергетически экономичным. Амитоз наблюдается у одноклеточных организмов, в то время как ткани многоклеточных размножаются с помощью других механизмов. Однако он иногда наблюдается и там, где снижена митотическая активность, например, в зрелых тканях.

Иногда прямое деление выделяют как разновидность митоза, однако некоторые ученые считают это отдельным механизмом. Протекание этого процесса даже в старых клетках происходит довольно редко. Далее будут рассмотрены мейоз и его фазы, процесс митоза, а также сходства и различия этих способов. По сравнению с простым делением они более сложны и совершенны. Особенно это касается редукционного деления, так что характеристика фаз мейоза будет наиболее подробной.

Важную роль в делении клетки имеют центриоли - специальные органоиды, как правило, располагающиеся рядом с комплексом Гольджи. Каждая такая структура состоит из 27 микротрубочек, сгруппированных по три. Вся конструкция имеет цилиндрическую форму. Центриоли непосредственно участвуют в формировании веретена деления клетки в процессе непрямого деления, о котором речь пойдет дальше.

Митоз

Продолжительность существования клеток различается. Некоторые живут пару дней, а какие-то можно отнести к долгожителям, поскольку их полная смена происходит очень редко. И практически все эти клетки размножаются с помощью митоза. У большинства из них между периодами деления проходит в среднем 10-24 часа. Сам митоз занимает небольшой период времени - у животных примерно 0,5-1

час, а у растений около 2-3. Этот механизм обеспечивает рост клеточной популяции и воспроизводство идентичных по своему генетическому наполнению единиц. Так соблюдается преемственность поколений на элементарном уровне. При этом число хромосом остается неизменным. Именно этот механизм является наиболее распространенным вариантом репродукции эукариотических клеток.

Значение этого вида деления велико - этот процесс помогает расти и регенерировать тканям, за счет чего происходит развитие всего организма. Кроме того, именно митоз лежит в основе бесполого размножения. И еще одна функция - перемещение клеток и замена уже отживших. Поэтому считать, что из-за того, что стадии мейоза сложнее, то и его роль гораздо выше, неправильно. Оба эти процесса выполняют разные функции и по-своему важны и незаменимы.

Митоз состоит из нескольких фаз, различающихся по своим морфологическим особенностям. Состояние, в котором клетка находится, будучи готовой к непрямому делению, называют интерфазой, а непосредственно процесс разделяется еще на 5 стадий, которые необходимо рассмотреть подробнее.

Фазы митоза

Находясь в интерфазе, клетка готовится к делению: происходит синтез ДНК и белков. Эта стадия подразделяется на еще несколько, в ходе которых происходит рост всей структуры и удвоение хромосом. В этом состоянии клетка пребывает до 90% всего жизненного цикла.

Остальные 10% занимает непосредственно деление, разделяющееся на 5 стадий. При митозе клеток растений также выделяется препрофаза, которая отсутствует во всех других случаях. Происходит образование новых структур, ядро перемещается к центру. Формируется препрофазная лента, размечающая предполагаемое место будущего деления.

Во все же остальных клетках процесс митоза проходит следующим образом:

Таблица 1

Наименование стадии Характеристика
Профаза Ядро увеличивается в размерах, хромосомы в нем спирализуются, становятся видимыми в микроскоп. В цитоплазме образуется веретено деления. Зачастую происходит распад ядрышка, однако это происходит не всегда. Содержание генетического материала в клетке остается неизменным.
Прометафаза Происходит распад ядерной мембраны. Хромосомы начинают активное, но беспорядочное движение. В конечном счете, все они приходят в плоскость метафазной пластинки. Этот этап длится до 20 минут.
Метафаза Хромосомы выстраиваются вдоль экваториальной плоскости веретена деления примерно на равном расстоянии от обоих полюсов. Численность микротрубочек, удерживающих всю конструкцию в стабильном состоянии, достигает максимума. Сестринские хроматиды отталкиваются друг от друга, сохраняя соединение лишь в центромере.
Анафаза Наиболее короткая стадия. Хроматиды разделяются и отталкиваются друг от друга в направлении ближайших полюсов. Этот процесс иногда выделяют отдельно и называют анафазой А. В дальнейшем происходит расхождение самих полюсов деления. В клетках некоторых простейших веретено деления при этом увеличивается в длину до 15 раз. И этот подэтап носит название анафаза В. Длительность и последовательность процессов на данной стадии вариабельна.
Телофаза После окончания расхождения к противоположным полюсам хроматиды останавливаются. Происходит деконденсация хромосом, то есть их увеличение в размерах. Начинается реконструкция ядерных оболочек будущих дочерних клеток. Микротрубочки веретена деления исчезают. Формируются ядра, возобновляется синтез РНК.

После завершения деления генетической информации происходит цитокинез или цитотомия. Под этим термином подразумевается образование тел дочерних клеток из тела материнской. При этом органоиды, как правило, делятся пополам, хотя возможны исключения, образуется перегородка. Цитокинез не выделяют в отдельную фазу, как правило, рассматривая его в рамках телофазы.

Итак, в самых интересных процессах задействованы хромосомы, которые несут генетическую информацию. Что же это такое и почему они так важны?

О хромосомах

Еще не имея ни малейшего понятия о генетике, люди знали, что многие качества потомства зависят от родителей. С развитием биологии стало очевидно, что информация о том или ином организме хранится в каждой клетке, и часть ее передается будущим поколениям.

В конце 19 века были открыты хромосомы - структуры, состоящие из длинной

молекулы ДНК. Это стало возможно с совершенствованием микроскопов, и даже сейчас рассмотреть их можно лишь в период деления. Чаще всего открытие приписывают немецкому ученому В. Флемингу, который не только упорядочил все то, что было изучено до него, но и внес свой вклад: он одним из первых исследовал клеточную структуру, мейоз и его фазы, а также ввел термин "митоз". Само понятие "хромосома" было предложено чуть позже другим ученым - немецким гистологом Г. Вальдейером.

Структура хромосом в момент, когда они четко видны, довольно проста - они представляют собой две хроматиды, соединенные посередине центромерой. Она является специфической последовательностью нуклеотидов и играет важную роль в процессе размножения клеток. В конечном итоге хромосома внешне в профазе и метафазе, когда ее можно лучше всего разглядеть, напоминается букву Х.

В 1900 году были открыты описывающие принципы передачи наследственных признаков. Тогда стало окончательно ясно, что хромосомы - это именно то, с помощью чего передается генетическая информация. В дальнейшем учеными был проведен ряд экспериментов, доказывающих это. И тогда предметом изучения стало и то влияние, котрое на них оказывает деление клетки.

Мейоз

В отличие от митоза этот механизм в итоге приводит к образованию двух клеток с набором хромосом в 2 раза меньше исходного. Таким образом процесс мейоза служит переходом от диплоидной фазы к гаплоидной, причем в первую очередь

речь идет о делении ядра, а уже во вторую - всей клетки. Восстановление же полного набора хромосом происходит в результате дальнейшего слияния гамет. В связи с уменьшением количества хромосом этот метод еще определяют как редукционное деление клетки.

Мейоз и его фазы изучали такие известные ученые, как В. Флеминг, Э. Страсбургрер, В. И. Беляев и другие. Исследование этого процесса в клетках как растений, так и животных, продолжается до сих пор - настолько он сложен. Изначально этот процесс считался вариантом митоза, однако практически сразу после открытия он все-таки был выделен как отдельный механизм. Характеристика мейоза и его теоретическое значение были впервые в достаточной степени описаны Августом Вайсманом еще в 1887 году. С тех пор изучение процесса редукционного деления сильно продвинулось, но сделанные выводы пока не были опровергнуты.

Мейоз не следует путать с гаметогенезом, хотя оба эти процесса тесно связаны. В образовании половых клеток участвуют оба механизма, однако между ними есть ряд серьезных отличий. Мейоз происходит в две стадии деления, каждая из которых состоит из 4 основных фаз, между ними есть короткий перерыв. Длительность всего процесса зависит от количества ДНК в ядре и структуры хромосомной организации. В целом он гораздо более продолжителен в сравнении с митозом.

Кстати, одна из основных причин значительного видового разнообразия - именно мейоз. Набор хромосом в результате редукционного деления разбивается надвое, так что появляются новые комбинации генов, в первую очередь потенциально повышающие приспособляемость и адаптивность организмов, в итоге получающих те или иные наборы признаков и качеств.

Фазы мейоза

Как уже было упомянуто, редукционное клеточное деление условно делят на две стадии. Каждая из этих стадий разделена еще на 4. И первая фаза мейоза - профаза I в свою очередь подразделяется еще на 5 отдельных этапов. Поскольку изучение этого процесса продолжается, в дальнейшем могут быть выделены и другие. Сейчас же различают следующие фазы мейоза:

Таблица 2

Наименование стадии Характеристика
Первое деление (редукционное)

Профаза I

лептотена По-другому этот этап называют стадией тонких нитей. Хромосомы выглядят в микроскопе как спутанный клубок. Иногда выделяют пролептотену, когда отдельные ниточки еще сложно разглядеть.
зиготена Стадия сливающихся нитей. Гомологичные, то есть сходные между собой по морфологии и в генетическом отношении, пары хромосом сливаются. В процессе слияния, то есть конъюгации, образуются биваленты, или тетрады. Так называют довольно устойчивые комплексы из пар хромосом.
пахитена Стадия толстых нитей. На этом этапе хромосомы спирализуются и завершается репликация ДНК, образуются хиазмы - точки контакта отдельных частей хромосом - хроматид. Происходит процесс кроссинговера. Хромосомы перекрещиваются и обмениваются некоторыми участками генетической информации.
диплотена Также называется стадией двойных нитей. Гомологичные хромосомы в бивалентах отталкиваются друг от друга и остаются связанными только в хиазмах.
диакинез На этой стадии биваленты расходятся на периферии ядра.
Метафаза I Оболочка ядра разрушается, формируется веретено деления. Биваленты перемещаются к центру клетки и выстраиваются вдоль экваториальной плоскости.
Анафаза I Биваленты распадаются, после чего каждая хромосома из пары перемещается к ближайшему полюсу клетки. Разделения на хроматиды не происходит.
Телофаза I Завершается процесс расхождения хромосом. Происходит формирование отдельных ядер дочерних клеток, каждое - с гаплоидным набором. Хромосомы деспирализуются, образуется ядерная оболочка. Иногда наблюдается цитокинез, то есть деление самого тела клетки.
Второе деление (эквационное)
Профаза II Происходит конденсация хромосом, клеточный центр делится. Разрушается ядерная оболочка. Образуется веретено деления, перпендикулярное первому.
Метафаза II В каждой из дочерних клеток хромосомы выстраиваются вдоль экватора. Каждая из них состоит из двух хроматид.
Анафаза II Каждая хромосома делится на хроматиды. Эти части расходятся к противоположным полюсам.
Телофаза II Полученные однохроматидные хромосомы деспирализуются. Образуется ядерная оболочка.

Итак, очевидно, что фазы деления мейоза гораздо сложнее, чем процесс митоза. Но, как уже было упомянуто, это не умаляет биологической роли непрямого деления, поскольку они выполняют разные функции.

Кстати, мейоз и его фазы наблюдаются и у некоторых простейших. Однако, как правило, он включает в себя лишь одно деление. Предполагается, что такая одноступенчатая форма позднее развилась в современную, двухступенчатую.

Отличия и сходства митоза и мейоза

На первый взгляд кажется, что различия двух этих процессов очевидны, ведь это совершенно разные механизмы. Однако при более глубоком анализе оказывается, что различия митоза и мейоза не так уж глобальны, в конце концов они приводят к образованию новых клеток.

Прежде всего стоит поговорить о том, что есть общего у этих механизмов. По сути совпадения всего два: в одинаковой последовательности фаз, а также в том, что

перед обоими видами деления происходит репликация ДНК. Хотя, что касается мейоза, до начала профазы I этот процесс не завершается полностью, заканчиваясь на одной из первых подстадий. А последовательность фаз хоть и аналогична, но, по сути, происходящие в них события совпадают не полностью. Так что сходства митоза и мейоза не так уж и многочисленны.

Различий же гораздо больше. Прежде всего, митоз происходит в в то время как мейоз тесно связан с образованием половых клеток и спорогенезом. В самих фазах процессы не полностью совпадают. Например, кроссинговер в митозе происходит во время интерфазы, и то не всегда. Во втором же случае на этот процесс приходится анафаза мейоза. Рекомбинация генов в непрямом делении обычно не осуществляется, а значит, он не играет никакой роли в эволюционном развитии организма и поддержании внутривидового разнообразия. Количество получившихся в результате митоза клеток - две, и они в генетическом смысле идентичны материнской и обладают диплоидным набором хромосом. Во время редукционного деления все иначе. Результат мейоза - 4 отличающихся от материнской. Кроме того, оба механизма значительно различаются по длительности, и это связано не только с различием в количестве ступеней деления, но и длительностью каждого из этапов. Например, первая профаза мейоза длится намного дольше, ведь в это время происходит конъюгация хромосом и кроссинговер. Именно поэтому ее дополнительно делят на несколько стадий.

В общем и целом сходства митоза и мейоза достаточно незначительны по сравнению с их отличиями друг от друга. Перепутать эти процессы практически невозможно. Поэтому сейчас даже несколько удивляет то, что редукционное деление раньше считалось разновидностью митоза.

Последствия мейоза

Как уже было упомянуто, после окончания процесса редукционного деления, вместо материнской клетки с диплоидным набором хромосом образуются четыре гаплоидных. И если говорить про различия митоза и мейоза - это самое значительное. Восстановление необходимого количества, если речь идет о половых клетках, происходит после оплодотворения. Таким образом, с каждым новым поколением не происходит удвоения количества хромосом.

Кроме того, во время мейоза происходит В процессе размножения это приводит к поддержанию внутривидового разнообразия. Так что тот факт, что даже родные братья и сестры порой сильно отличаются друг от друга - именно результат мейоза.

Кстати, стерильность некоторых гибридов в животном мире - тоже проблема редукционного деления. Дело в том, что хромосомы родителей, принадлежащих к разным видам, не могут вступить в конъюгацию, а значит, процесс образования полноценных жизнеспособных половых клеток невозможен. Таким образом, именно мейоз лежит в основе эволюционного развития животных, растений и других организмов.

Мейоз - это деление в зоне созревания половых клеток , сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза», продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация(соединение гомологичных хромосом) и обмен генетической информацией. В анафазе Iцентроме­ры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологмейоза Митоз и его фазы митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называютзиготой.

Митоз, или непрямое деление, наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления. В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Мейоз и митоз

Таблица - Сравнение митоза и мейоза

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) -кроссинговер . Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при nхромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при nхромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих , земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза », во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз ).

Интерфаза состоит из нескольких периодов:

G 1 -фазы (от англ. gap - промежуток), или фазы начального роста , во время которой идет синтез мРНК , белков , других клеточных компонентов;

S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра , также происходит удвоение центриолей (если они, конечно, есть).

G 2 -фазы, во время которой идет подготовка к митозу .

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

-кариокинез (деление клеточного ядра);

-цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатахсветовой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков , какциклин-зависимые киназы и циклины . Клетки , находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста . Разные факторы роста, такие как тромбоцитарный , эпидермальный, фактор роста нервов, связываясь со своимирецепторами , запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ . Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами . Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса.Киназы не активны без циклинов . На разных стадиях клеточного цикла синтезируются разные циклины . Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза , когда запускается весь каскад реакций фосфорилирования , катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53 , pRb , Myc иRas . Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21 , являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Деление клеток

Все клетки появляются путём деления родительских клеток. Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

Интерфаза состоит из трех этапов. В течение 4–8 часов после рождения клетка увеличивает свою массу. Некоторые клетки (например, нервные клетки мозга) навсегда остаются в этой стадии, у других же в течение 6–9 часов удваивается хромосомная ДНК. Когда масса клетки увеличивается в два раза, начинается митоз .

В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза . Клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны. Каждая дочерняя клетка получает собственный набор хромосом и возвращается в стадию интерфазы. Весь процесс занимает около часа.

Процесс митоза может варьировать в зависимости от типа клетки. В растительной клетке отсутствуют центриоли, хотя веретено деления образуется. В грибных клетках митоз происходит внутри ядра, ядерная мембрана не распадается.

Наличие хромосом не является необходимым условием деления клетки. С другой стороны, один или несколько митозов могут останавливаться на стадии телофазы, в результате чего возникают многоядерные клетки (например, у некоторых водорослей).

Размножение при помощи митоза называют бесполым или вегетативным, а также клонированием . При митозе генетический материал родительских и дочерних клеток идентичен.

Мейоз , в отличие от митоза, является важным элементом полового размножения . При мейозе образуются клетки, содержащие лишь один набор хромосом, что делает возможным последующее слияние половых клеток (гамет) двух родителей. По сути, мейоз является разновидностью митоза. Он включает два последовательных деления клетки, однако хромосомы удваиваются только в первом из этих делений. Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом).

В результате мейотического деления у животных образуются четыре гаметы . Если мужские половые клетки имеют примерно одинаковые размеры, то при образовании яйцеклеток распределение цитоплазмы происходит очень неравномерно: одна клетка остаётся крупной, а три остальных настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки служат лишь для размещения избыточного генетического материала.

Мужские и женские гаметы сливаются, образуя зиготу . Хромосомные наборы при этом объединяются (этот процесс называется сингамией ), в результате чего в зиготе восстанавливается удвоенный набор хромосом – по одному от каждого из родителей. Случайное расхождение хромосом и обмен генетическим материалом между гомологичными хромосомами приводят к возникновению новых комбинаций генов, повышая генетическое разнообразие. Образовавшаяся зигота развивается в самостоятельный организм.

В последнее время проводились эксперименты по искусственному слиянию клеток одного или разных видов. Наружные поверхности клеток склеивались вместе, а мембрана между ними разрушалась. Таким образом удалось получить гибридные клетки мыши и цыплёнка, человека и мыши. Однако при последующих делениях клетки теряли большинство хромосом одного из видов.

В других экспериментах клетка разделялась на компоненты, например, ядро, цитоплазму и мембрану. После этого компоненты различных клеток снова соединяли вместе, и в результате получалась живая клетка, состоящая из компонентов клеток разных видов. В принципе, опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию новых форм жизни.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...