Инструментальные методы исследования. техника определения проста, нет необходимости в сложном дорогосто­ящем оборудовании Современные инструментальные методы химического анализа

1. Классификация инструментальных методов анализа по измерительному параметру и способу измерения. Примеры инструментальных методов анализа для качественного анализа веществ

В одном из способов классификации инструментальных (физико-химических) методов в основу анализа положена природа измеряемого физического параметра анализируемой системы и способа его измерения; величина этого параметра является функцией количества вещества. В соответствии с этим все инструментальные методы делятся на пять больших групп:

Электрохимические;

Оптические;

Хроматографические;

Радиометрические;

Масс-спектрометрические.

Электрохимические методы анализа основаны на использовании электрохимических свойств анализируемых веществ. К ним относятся следующие методы.

Электрогравиметрический метод - основан на точном измерении массы определяемого вещества или его составных частей, которые выделяются на электродах при прохождении постоянного электрического тока через анализируемый раствор.

Кондуктометрический метод - основан на измерении электрической проводимости растворов, которая изменяется в результате протекающих химических реакций и зависит от свойств электролита, его температуры и концентрации растворенного вещества.

Потенциометрический метод - основан на измерении потенциала электрода, погруженного в раствор исследуемого вещества. Потенциал электрода зависит от концентрации соответствующих ионов в растворе при постоянных условиях измерений, которые проводят с помощью приборов потенциометров.

Полярографический метод - основан на использовании явления концентрационной поляризации, возникающей на электроде с малой поверхностью при пропускании электрического тока через анализируемый раствор электролита.

Кулонометрический метод - основан на измерении количества электричества, израсходованного на электролиз определенного количества вещества. В основе метода лежит закон Фарадея.

Оптические методы анализа основаны на использовании оптических свойств исследуемых соединений. К ним относятся следующие методы.

Эмиссионный спектральный анализ - основан на наблюдении линейчатых спектров, излучаемых парами веществ при их нагревании в пламени газовой горелки, искры или электрической дуге. Метод дает возможность определять элементный состав веществ.

Абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях спектра. Различают спектрофотометрический и фотоколориметрический методы. Спектрофотометрический метод анализа основан на измерении поглощения света (монохроматического излучения) определенной длины волны, которая соответствует максимуму кривой поглощения вещества. Фотоколориметрический метод анализа основан на измерении светопоглощения или определения спектра поглощения в приборах - фотоколориметрах в видимом участке спектра.

Рефрактометрия - основана на измерении коэффициента преломления.

Поляриметрия - основана на измерении вращения плоскости поляризации.

Нефелометрия - основана на использовании явлений отражения или рассеивания света неокрашенными частицами, взвешенными в растворе. Метод дает возможность определять очень малые количества вещества, находящиеся в растворе в виде взвеси.

Турбидиметрия - основанная на использовании явлений отражения или рассеивания света окрашенными частицами, которые находятся во взвешенном состоянии в растворе. Свет, поглощенный раствором или прошедший через него, измеряют так же, как и при фотоколориметрии окрашенных растворов.

Люминесцентный или флуоресцентный анализ - основан на флуоресценции веществ, которые подвергаются облучению ультрафиолетовым светом. При этом измеряется интенсивность излучаемого или видимого света.

Пламенная фотометрия (фотометрия пламени) - основана на распылении раствора исследуемых веществ в пламени, выделении характерного для анализируемого элемента излучения и измерении его интенсивности. Метод используют для анализа щелочных, щелочноземельных и некоторых других элементов.

Хроматографические методы анализа основаны на использовании явлений избирательной адсорбции. Метод применяют в анализе неорганических и органических веществ для разделения, концентрирования, выделения отдельных компонентов из смеси, очистки от примесей.

Радиометрические методы анализа основаны на измерении радиоактивного излучения данного элемента.

Масс-спектрометрические методы анализа основаны на определении масс отдельных ионизированных атомов, молекул и радикалов, в результате комбинированного действия электрического и магнитного полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах - масс-спектрометрах или масс-спектрографах.

Примеры инструментальных методов анализа для качественного анализа веществ: рентгено-флуоресцентный, хроматография, кулонометрия, эмиссионный, пламенная фотометрия и т.д.

2.

2. 1 Сущность потенциометрического титрования. Требования к реакциям. Примеры реакций окисления-восстановления, осаждения, комплексообразования и соответствующие им электродные системы. Графические способы опреде ления конечной точки титрования

Потенциометрическое титрование основано на определении эквивалентной точки по изменению потенциала на электродах, опущенных в титруемый раствор. При потенциометрическом титровании используют электроды как неполяризующиеся (без протекания через них тока), так и поляризующиеся (с протеканием через них тока).

В первом случае в процессе титрования определяется концентрация в растворе одного из ионов, для регистрации которого имеется подходящий электрод.

Потенциал Ех на этом индикаторном электроде устанавливается согласно уравнению Нернста. Например, для реакций окисления - восстановления уравнение Нернста выглядит следующим образом:

где Ех - потенциал электрода в данных конкретных условиях; Aок- концентрация окисленной формы металла; Aвосст - концентрация восстановленной формы металла; Е0 - нормальный потенциал; R - универсальная газовая постоянная (8,314 дж/(град*моль)); Т - абсолютная температура; n - разность валентностей окисленной и восстановленной форм ионов металла.

Для образования электрической цепи в титруемый раствор помещают второй так называемый электрод сравнения, например каломельный, потенциал которого в процессе реакции остается постоянным. Потенциометрическое титрование на неполяризующихся электродах помимо упомянутых реакций окисления - восстановления используется также при реакциях нейтрализации. В качестве индикаторных электродов при реакциях окисления-восстановления применяют металлы (Pt, Wo, Mo). При реакциях нейтрализации применяют чаще всего стеклянный электрод, имеющий в широкой области характеристику, аналогичную водородному электроду. Для водородного электрода зависимость потенциала от концентрации ионов водорода выражается следующей зависимостью:

Или при 25°С:

При потенциометрическом титровании часто используют титрование не до определенного потенциала, а до определенной величины рН, например, до нейтральной среды рН=7. Несколько в стороне от общепринятых методов потенциометрического титрования (без протекания тока через электроды), рас смотренных выше, стоят методы потенциометрического титрования при постоянном токе с поляризующимися электродами. Чаще применяют два поляризующихся электрода, но иногда пользуются и одним поляризующимся электродом.

В отличие от потенциометрического титрования с неполяризующимися электродами, при котором ток через электроды практически не протекает, в данном случае через электроды (обычно платиновые) пропускается небольшой (около нескольких микроампер) постоянный ток, получаемый от источника стабилизированного тока. В качестве источника тока может служить высоковольтный источник питания (около 45 В) с последовательно включенным относительно большим сопротивлением. Измеряемая на электродах разность потенциалов резко возрастает при приближении реакции к эквивалентной точке вследствие поляризации электродов. Величина скачка потенциала может быть гораздо больше, чем при титровании при нулевом токе с неполяризующимися электродами.

Требования к реакциям при потенциометрическом титровании - это полнота прохождения реакции; достаточно большая скорость реакции (чтобы результаты не приходилось ждать, и была возможность автоматизации); получение в реакции одного четкого продукта, а не смеси продуктов, которые при различных концентрациях могут получаться.

Примеры реакций и соответствующие им электродные системы:

Окисление -восстановлени е :

Система электродов:

В обоих случаях используется система, которая состоит из платинового электрода и хлорсеребряного.

О саждени е :

Ag+ + Cl- =AgClv.

Система электродов:

К омплексообразовани е :

Система электродов:

Графические способы определения конечной точки титрования. Принцип заключается в визуальном изучении полной кривой титрования. Если начертить зависимость потенциала индикаторного электрода от объема титранта, то на полученной кривой имеется максимальный наклон - т.е. максимальное значение ДE/ДV - который можно принять за точку эквивалентности. Рис. 2.1, показывающий именно такую зависимость, построен по данным табл. 2.1.

Таблица 2.1 Результаты потенциометрического титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра

Рис. 2.1 Кривые титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра: а - обычная кривая титрования, показывающая область вблизи точки эквивалентности; б - дифференциальная кривая титрования (все данные из табл. 2.1)

Метод Грана. Можно построить график ДE/ДV - изменение потенциала на объем порции титранта как функцию объема титранта. Такой график, полученный из результатов титрования, приведенных в табл. 2.1, показан на рис. 2.2.

Рис. 2.2 Кривая Грана, построенная по данным потенциометрического титрования, представленным в табл. 2.1

2.2 Задача : в ычислить потенциал платинового электрода в растворе сульфата железа (II), оттитрованного раствором перманганата калия на 50% и 100,1%; если концентрация ионов FeІ ? , H ? и MnO ?? равны 1 моль/дмі

Потенциал платинового электрода - электрода третьего рода - определяется природой сопряженной окислительно-восстановительной пары и концентрацией ее окисленной и восстановленной форм. В данном растворе имеется пара:

для которой:

Поскольку исходный раствор оттитрован на 50%, то /=50/50 и 1.

Следовательно, E = 0,77 + 0,058 lg1 = 0,77 В.

3. Амперометрическое титрование

3.1 Амперометрическое титрование, его сущность, условия. Типы кривых титрования в зависимости от природы титруемого вещества и титранта на примерах конкретных реакци й

Амперометрическое титрование. Для амперометрической индикации в титровании можно использовать ячейку такого же принципиального устройства, что и для прямой амперометрии. В этом случае метод называется амперометрическим титрованием с одним поляризованным электродом. В ходе титрования контролируют ток, обусловленный определяемым веществом, титрантом или продуктом реакции, при постоянном значении потенциала рабочего электрода, находящимся в области потенциалов предельного диффузионного тока.

В качестве примера рассмотрим осадительное титрование ионов Рb2+ раствором хромата калия при различных потенциалах рабочего электрода.

Области предельных диффузионных токов окислительно-восстановительных пар Pb2+/Pb и СrО42-/Сr(ОН)3 расположены таким образом, что при потенциале 0 В хромат-ион уже восстанавливается, а ион Рb2+ еще нет (этот процесс происходит лишь при более отрицательных потенциалах).

В зависимости от потенциала рабочего электрода можно получить кривые титрования различной формы.

а) Потенциал равен - 1В (рис. 3.1):

До точки эквивалентности протекающий через ячейку ток является катодным током восстановления ионов Рb2+. При добавлении титранта их концентрация уменьшается, и ток падает. После точки эквивалентности ток обусловлен восстановлением Cr(VI) до Сr(III), вследствие чего по мере добавления титранта катодный ток начинает возрастать. В точке эквивалентности (ф=1) на кривой титрования наблюдается резкий излом (на практике он бывает выражен слабее, чем на рис. 3.1).

б) Потенциал равен 0 В:

При этом потенциале ионы Рb2+ не восстанавливаются. Поэтому до точки эквивалентности наблюдается лишь небольшой постоянный остаточный ток. После точки эквивалентности в системе появляются свободные хромат-ионы, способные к восстановлению. При этом по мере добавления титранта катодный ток возрастает, как и в ходе титрования при - 1В (рис. 3.1).

Рис. 3.1 Кривые амперометрического титрования Рb2+ хромат-ионами при потенциалах рабочего электрода - 1В и 0 В

По сравнению с прямой амперометрией амперометрическое титрование, как и любой титриметрическии метод, характеризуется более высокой точностью. Однако метод амперометрического титрования более трудоемок. Наиболее широко применяются на практике методики амперометрического титрования с двумя поляризованными электродами.

Биамперометрическое титрование . Этот вид амперометрического титрования основан на использовании двух поляризуемых электродов - обычно платиновых, на которые подается небольшая разность потенциалов - 10-500 мВ. В этом случае прохождение тока возможно лишь при протекании обратимых электрохимических реакций на обоих электродах. Если хоть одна из реакций кинетически затруднена, происходит поляризация электрода, и ток становится незначительным.

Вольтамперные зависимости для ячейки с двумя поляризуемыми электродами приведены на рис. 3.2. В этом случае играет роль лишь разность потенциалов между двумя электродами. Значение потенциала каждого из электродов в отдельности остается неопределенным ввиду отсутствия электрода сравнения.

Рис 3.2 Вольтамперные зависимости для ячейки с двумя одинаковыми поляризуемыми электродами в случае обратимой реакции без перенапряжения (а ) и необратимой реакции с перенапряжением (б ).

В зависимости от степени обратимости электродных реакций можно получить кривые титрования различной формы.

а) Титрование компонента обратимой окислительно-восстановительной пары компонентом необратимой пары, например, иода тиосульфатом (рис. 3.3, а ):

I2 + 2S2O32- 2I- + S4O62-.

До точки эквивалентности через ячейку протекает ток, обусловленный процессом:

Ток возрастает вплоть до величины степени оттитрованности, равной 0,5, при которой оба компонента пары І2/І- находятся в одинаковых концентрациях. Затем ток начинает убывать вплоть до точки эквивалентности. После точки эквивалентности вследствие того, что пара S4O62-/S2O32- является необратимой, наступает поляризация электродов, и ток прекращается.

б) Титрование компонента необратимой пары компонентом обратимой пары, например, ионов As(III) бромом (рис. 3.3, б ):

До точки эквивалентности электроды поляризованы, поскольку окислительно-восстановительная система As(V)/As(III) необратима. Через ячейку не протекает ток. После точки эквивалентности ток возрастает, поскольку в растворе появляется обратимая окислительно-восстановительная система Вr2/Вr-.

в) Определяемое вещество и титрант образуют обратимые окислительно-восстановительные пары: титрование ионов Fe(II) ионами Ce(IV) (рис. 3.3, в ):

Здесь поляризации электродов не наблюдается ни на каком этапе титрования. До точки эквивалентности ход кривой такой же, как на рис. 3.3, а , после точки эквивалентности - как на рис. 3.3, б .

Рис. 3.3 Кривые биамперометрического титрования иода тиосульфатом (a ), As(III) бромом (б ) и ионов Fe(II) ионами Ce(IV) (в )

3.2 Задача : в электрохимическую ячейку с платиновым микроэлектродом и электродом сравнения поместили 10,00 смі раствора NaCl и оттитровали 0,0500 моль/дмі раствором AgNO 3 объёмом 2,30 смі. Рассчитать содержание NaCl в растворе (%)

В растворе идет реакция:

Ag+ + Cl- =AgClv.

V(AgNO3) = 0,0023 (дм3);

n(AgNO3) = n(NaCl);

n(AgNO3)=c(AgNO3)*V(AgNO3)=0,0500*0,0023=0,000115,

или 1,15*104(моль).

n(NaCl) = 1,15*10-4 (моль);

m(NaCl) = M(NaCl)* n(NaCl) = 58,5*1,15*10-4 = 6,73*10-3 г.

Плотность р-ра NaCl примем за 1 г/см3, тогда масса р-ра будет 10 г, отсюда:

щ(NaCl) = 6,73*10-3/10*100 % = 0,0673 %.

Ответ: 0,0673 %.

4. Хроматографические методы анализа

4.1 Фазы в хроматографических методах анализа, их характеристика. Основы жидкостной хроматографии

Метод жидкостной распределительной хроматографии предложен Мартином и Синджем, которые показали, что высота, эквивалентная теоретической тарелке, соответствующим образом наполненной колонки может достигать 0,002 см. Таким образом, колонка длиной 10 см может содержать порядка 5000 тарелок; высокой эффективности разделения можно ожидать даже от сравнительно коротких колонок.

Стационарная фаза. Наиболее распространенным твердым носителем в распределительной хроматографии служит кремневая кислота или силикагель. Этот материал сильно поглощает воду; таким образом, стационарной фазой является вода. Для некоторых разделений полезно в пленку из воды включить какой-либо буфер или сильную кислоту (или основание). В качестве стационарной фазы на силикагеле нашли также применение полярные растворители, такие, как алифатические спирты, гликоли или нитрометан. К другим носителям относятся диатомиты, крахмал, целлюлоза и толченое стекло; для смачивания этих твердых носителей используют воду и разные органические жидкости.

Подвижная фаза. Подвижной фазой может служить чистый растворитель или смесь растворителей, которые в заметной степени не смешиваются со стационарной фазой. Повысить эффективность разделения иногда можно непрерывным изменением состава смешанного растворителя по мере продвижения элюента (градиентное элюирование). В некоторых случаях разделение улучшается, если элюирование проводят рядом разных растворителей. Подвижную фазу выбирают главным образом эмпирически.

Современные приборы часто снабжены насосом для ускорения потока жидкости через колонку.

Основными параметрами ЖХ, характеризующими поведение вещества в колонке, являются время удерживания компонента смеси и удерживаемый объем. Время от момента ввода анализируемой пробы до регистрации максимума пика называют временем удерживания (элюирования) t R . Время удерживания складывается из двух составляющих - времени пребывания вещества в подвижной t 0 и неподвижной t s фазах:

t R .= t 0 + t s . (4.1)

Значение t 0 фактически равно времени прохождения через колонку адсорбируемого компонента. Значение t R не зависит от количества пробы, но зависит от природы вещества и сорбента, а также упаковки сорбента и может меняться от колонки к колонке. Поэтому для характеристики истинной удерживающей способности следует ввести исправленное время удерживания t? R :

t? R = t R - t 0 . (4.2)

Для характеристики удерживания часто используют понятие удерживаемого объема V R - объем подвижной фазы, который нужно пропустить через колонку с определенной скоростью, чтобы элюировать вещество:

V R = t R F, (4.3)

где F - объемная скорость потока подвижной фазы, см3с-1.

Объем для вымывания несорбируемого компонента (мертвый объем) выражается через t 0 : V 0 = t 0 F , и включает в себя объем колонки, не занятый сорбентом, объем коммуникаций от устройства ввода пробы до колонки и от колонки до детектора.

Исправленный удерживаемый объем V? R соответственно равен:

V? R = V R - V 0 . . (4.4)

При постоянных условиях хроматографирования (скорость потока, давление, температура, состав фаз) значения t R и V R строго воспроизводимы и могут быть использованы для идентификации веществ.

Любой процесс распределения вещества между двумя фазами характеризуют коэффициентом распределения D . Величина D отношением c s /c 0 , где с т и с 0 - концентрации вещества в подвижной и неподвижной фазах соответственно. Коэффициент распределения связан с хроматографическими параметрами.

Характеристикой удерживания является также коэффициент емкости k" , определяемый как отношение массы вещества в неподвижной фазе к массе вещества в подвижной фазе: k" = m н /m п . Коэффициент емкости показывает, во сколько раз вещество дольше находится в неподвижной фазе, чем в подвижной. Величину k" вычисляют из экспериментальных данных по формуле:

Важнейшим параметром хроматографического разделения является эффективность хроматографической колонки, количественной мерой которой служат высота Н, эквивалентная теоретической тарелке, и число теоретических тарелок N.

Теоретическая тарелка - это гипотетическая зона, высота которой соответствует достижению равновесия между двумя фазами. Чем больше теоретических тарелок в колонке, т.е. чем большее число раз устанавливается равновесие, тем эффективнее колонка. Число теоретических тарелок легко рассчитать непосредственно из хроматограммы, сравнивая ширину пика w и время пребывания t R компонента в колонке :

Определив N и зная длину колонки L , легко вычислить Н :

Эффективность хроматографической колонки также характеризует симметричность соответствующего пика: чем более симметричен пик, тем более эффективной является колонка. Численно симметричность выражают через коэффициент симметрии K S , который может быть определен по формуле:

где b 0.05 - ширина пика на одной двадцатой высоты пика; А - расстояние между перпендикуляром, опущенным из максимума пика, и передней границей пика на одной двадцатой высоты пика.

Для оценки воспроизводимости хроматографического анализа используют относительное стандартное отклонение (RSD), характеризующее рассеяние результатов в выборочной совокупности:

где n - количество параллельных хроматограмм; х - содержание компонента в пробе, определенное путем расчета площади или высоты соответствующего пика на хроматограмме; - среднее значение содержания компонента, рассчитанное на основании данных параллельных хроматограмм; s 2 - дисперсия полученных результатов.

Результаты хроматографического анализа считаются вероятными, если выполняются условия пригодности хроматографической системы:

Число теоретических тарелок, рассчитанное по соответствующему пику, должно быть не менее требуемого значения;

Коэффициент разделения соответствующих пиков должен быть не менее требуемого значения;

Относительное стандартное отклонение, рассчитанное для высоты или площади соответствующего пика, должно быть не более требуемого значения;

Коэффициент симметрии соответствующего пика должен быть в требуемых пределах.

4.2 За дача : р ассчитать методом внутреннего стандарта содержание анализируемого вещества в пробе (в г и %), если при хроматографировании получены следующие данные: при калибровке: qВ=0,00735, SВ =6,38 смІ, qСТ=0,00869 г, SСТ=8,47 смІ , -при анализе: SВ=9,38 смІ, VВ=47 ммі, qСТ=0,00465 г, SСТ=4,51 смІ

SСТ/SВ = k*(qСТ/ qВ);

k = (SСТ/SВ)/(qСТ/ qВ) = (8,47/6,38)/(0,00869/0,00735) = 1,123;

qВ = k*qСТ*(SВ/SСТ) = 1,123*0,00465*(9,38/4,51) = 0,01086 г.

x, % = k*r*(SВ/SСТ)*100;

r = qСТ/ qВ = 0,00465/0,01086 = 0,4282;

x, % = 1,123*0,4282*(9,38/4,51) = 100%.

5. Фотометрическое титрование

5.1 Фотометрическое титрование. Сущность и условия титрования. Кривые титрования. Преимущества фотометрического титрования в сравнении с прямой фотометрией

Фотометрические и спектрофотометрические измерения можно использовать для фиксирования конечной точки титрования. Конечная точка прямого фотометрического титрования появляется в результате изменения концентрации реагента и продукта реакции или обоих одновременно; очевидно, по меньшей мере, одно из этих веществ должно поглощать свет при выбранной длине волны. Косвенный метод основан на зависимости оптической плотности индикатора от объема титранта.

Рис. 5.1 Типичные кривые фотометрического титрования. Молярные коэффициенты поглощения определяемого вещества, продукта реакции и титранта обозначены символами еs, еp, еt соответственно

Кривые титрования . Кривая фотометрического титрования представляет собой график зависимости исправленной оптической плотности от объема титранта. Если условия выбраны правильно, кривая состоит из двух прямолинейных участков с разным наклоном: один из них соответствует началу титрования, другой - продолжению за точкой эквивалентности. Вблизи точки эквивалентности часто наблюдается заметный перегиб; конечной точкой считают точку пересечения прямолинейных отрезков после экстраполяции.

На рис. 5.1 приведены некоторые типичные кривые титрования. При титровании непоглощающих веществ окрашенным титрантом с образованием бесцветных продуктов в начале титрования получается горизонтальная линия; за точкой эквивалентности оптическая плотность быстро растет (рис. 5.1, кривая а ). При образовании окрашенных продуктов из бесцветных реагентов, наоборот, сначала наблюдается линейный рост оптической плотности, а затем появляется область, в которой поглощение не зависит от объема титранта (рис. 5.1, кривая б ). В зависимости от спектральных характеристик реагентов и продуктов реакции возможны также кривые других форм (рис. 5.1).

Чтобы конечная точка фотометрического титрования была достаточно отчетливой, поглощающая система или системы должны подчиняться закону Бера; в противном случае нарушается линейность отрезков кривой титрования, необходимая для экстраполяции. Необходимо, далее, ввести поправку на изменение объема путем умножения оптической плотности на множитель (V+v)/V, где V - исходный объем раствора, a v - объем добавленного титранта.

Фотометрическое титрование часто обеспечивает более точные результаты, чем прямой фотометрический анализ, так как для определения конечной точки объединяются данные нескольких измерений. Кроме того, при фотометрическом титровании присутствием других поглощающих веществ можно пренебречь, поскольку измеряется только изменение оптической плотности.

5.2 Задача : н авеску дихромата калия массой 0,0284 г растворили в мерной колбе вместимостью 100,00 смі. Оптическая плотность полученного раствора при л max =430 нм равна 0,728 при толщине поглощённого слоя 1 см. вычислить молярную и процентную концентрацию, молярный и удельный коэффициенты поглощения этого раствора

где - оптическая плотность раствора; е - молярный коэффициент поглощения вещества, дм3*моль-1*см-1; с - концентрация поглощающего вещества, моль/дм3; l - толщина поглощающего слоя, см.

где k - удельный коэффициент поглощения вещества, дм3*г-1*см-1.

n(K2Cr2O7) = m(K2Cr2O7)/ M(K2Cr2O7) = 0,0284/294 = 9,67*10-5 (моль);

c(K2Cr2O7) = 9,67*10-5/0,1 = 9,67*10-4(моль/л);

Плотность р-ра K2Cr2O7 примем за 1 г/см3, тогда масса р-ра будет 100 г, отсюда:

щ(NaCl) = 0,0284/100*100 % = 0,0284 %.

е = D/cl =0,728/9,67*10-4*1 = 753 (дм3*моль-1*см-1).

k = D/cl =0,728/0,284 *1 = 2,56(дм3*г-1*см-1).

6. Описать и объяснить возможность использования инструментальных методов анализа (оптических, электрохимических, хроматографических) для качественного и количественного определения хлорида цинка

Хлорид ZnCl2; M=136,29; бц. триг., расплыв; с=2,9125; tпл=318; tкип=732; С°р=71,33; S°=111,5; ДН°=-415,05; ДG°=-369,4; ДНпл=10,25; ДНисп=119,2; у=53,8320; 53,6400; 52,2700; р=1428; 10506; s=2080; 27210; 36720; 40825; 43830; 45340; 47150; 49560; 54980; 614100; х.р.эф.; р.эт. 10012,5, ац. 43,518; пир. 2,620; н.р.ж. NH3.

Хлорид цинка ZnCl2 наиболее изученный из галогенидов, получается растворением цинковой обманки, окиси цинка или металлического цинка в соляной кислоте. Безводный хлорид цинка представляет собой белый зернистый порошок, состоящий из гексагонально-ромбоэдрических кристаллов, легко плавится и при быстром охлаждении застывает в виде прозрачной массы, похожей на фарфор. Расплавленный хлорид цинка довольно хорошо проводит электрический ток. При прокаливании хлорид цинка улетучивается, его пары конденсируются в виде белых игл. Он очень гигроскопичен, но вместе с тем его легко получить безводным. Хлорид цинка кристаллизуется без воды при температуре выше 28°С, а из концентрированных растворов он может быть выделен безводным даже при 10°С. В воде хлорид цинка растворяется с выделением большого количества тепла (15,6 ккал/моль). В разбавленных растворах хлорид цинка хорошо диссоциирует на ионы. Ковалентный характер связи в хлориде цинка проявляется в хорошей растворимости его в метиловом и этиловом спиртах, ацетоне, диэтиловом эфире, глицерине, уксусно-этиловом эфире и других кислородосодержащих растворителях, а также диметилформамиде, пиридине, анилине и других азотосодержащих соединениях основного характера.

Хлорид цинка склонен к образованию комплексных солей, отвечающих общим формулам от Me до Me4, однако наиболее распространенными и устойчивыми являются соли, в которых около атома цинка координируются четыре аниона хлора, и состав большинства солей соответствует формуле Me2. Как показало изучение Раман-спектров, в растворах самого хлорида цинка в зависимости от его концентрации могут присутствовать ионы 2+, ZnCl+(ад), 2-, и не обнаружены ионы - или 2-. Известны и смешанные комплексы, с анионами нескольких кислот. Так, потенциометрическим методам было доказано образование сульфатно-хлоридных комплексов цинка в растворах. Были обнаружены смешанные комплексы: 3-, 4, 5-.

Количественно и качественно ZnCl2 можно определить по Zn2+. Количественно и качественно можно его определить фотометрическим методом по спектру поглощения. Например, с такими реагентами как дитизон, мурексид, арсазен и т.д.

Спектральное определение цинка . Очень удобны для обнаружения цинка спектральные методы анализа. Анализ проводится по группе из трех линий: 3345, 02 I; 3345,57 I 3345,93 I А, из которых первая наиболее интенсивная, или по паре линий: 3302,59 I и 3302,94 I А.

Инструментальные (физические и физико-химические) методы анализа основаны на использовании зависимости между измеряемыми физическими свойствами веществ и их качественным и количественным составом. Так как физические свойства веществ измеряются с помощью различных приборов – «инструментов», то эти методы анализа называют также инструментальными методами.

Общее число физико-химических методов анализа довольно велико – оно составляет несколько десятков. Наибольшее практическое значение среди них имеют следующие:

оптические методы, основанные на измерении оптических свойств веществ;

электрохимические методы, основанные на измерении электрохимических свойств системы;

хроматографические методы, основанные на использовании способности различных веществ к избирательной сорбции.

Среди указанных групп наиболее обширной по числу методов и важной по практическому значению является группа оптических методов анализа .

Эмиссионный спектральный анализ. В основе метода лежит измерение интенсивности света, излучаемого веществом (атомами или ионами) при его энергетическом возбуждении, например, в плазме электрического разряда. Метод даёт возможности определять микро- и ультрамикроколичества вещества, анализировать за короткое время несколько элементов.

Пламенная фотометрия является разновидностью эмиссионного анализа. Она основана на использовании газового пламени в качестве источника энергетического возбуждения излучения. Метод в основном используют для анализа щелочных и щелочноземельных металлов.

Абсорбционно-спектральный анализ основан на изучении спектров поглощения лучей анализируемыми веществами. При прохождении через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества.

Атомно-абсорбционный анализ. В основе метода лежит измерение поглощения монохроматического излучения атомами определяемого вещества в газовой фазе после атомизации вещества.

Нефелометрический анализ. Основан на отражении света твердыми частицами, взвешенными в растворе. Анализ проводится с помощью приборов нефелометров.

Люминесцентный анализ – это совокупность оптических методов анализа, основанных на люминесценции (свечении вещества, возникающем при его возбуждении различными источниками энергии). По способу (источнику) возбуждения различают: рентгенолюминесценцию – свечение вещества под воздействием рентгеновских лучей; хемилюминесценцию – свечение вещества за счет энергии химической реакции.

В аналитической практике из всех видов люминесценции наибольшее распространение получила флуоресценция, возникающая под действием излучения в УФ и видимой области спектра. Большим достоинством рентгенофлуоресцентного метода является возможность анализа образца без его разрушения, что особенно ценно при анализе уникальных изделий.

Электрохимические методы анализа основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Аналитическим сигналом может служить любой электрический параметр (потенциал, сила тока, сопротивление и т. д.), который связан с концентрацией анализируемого раствора функциональной зависимостью и поддающийся измерению.

Различают прямые и косвенные электрохимические методы.

В прямых методах используется зависимость силы тока (потенциала и т. д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения т. к. т. определяемого компонента подходящим титрантом, т. е. используется зависимость измеряемого параметра от объёма титранта.

К наиболее распространенным электрохимическим методам анализа относятся потенциометрический, вольтамперометрический и кондуктометрический.

Потенциометрический метод основан на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах – от концентрации ионов.

Для измерений составляется гальванический элемент из двух электродов: электрода сравнения (электродный потенциал которого известен) и индикаторного электрода, на котором происходит главный процесс – обмен ионами и возникает электродный потенциал, который измеряют путем сравнения. Затем по уравнению Нернста находят количество определяемого компонента.

Потенциометрическое титрование основано на определении точки эквивалентности по результатам потенциометрических измерений. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода.

Для потенциометрического титрования собирают цепь из индикаторного электрода в анализируемом растворе и электрода сравнения. В качестве электродов сравнения чаще всего применяют каломельный или хлорсеребряный.

Вольтамперометрический метод анализа основан на изучении поляризационных или вольтамперных кривых (кривых зависимости силы тока от напряжения), которые получаются, если при электролизе раствора анализируемого вещества постепенно повышать напряжение и фиксировать при этом силу тока. Электролиз следует проводить с использованием легкополяризуемого электрода с небольшой поверхностью, на котором происходит электровосстановление или электроокисление вещества.

Амперометрическое титрование (потенциометрическое поляризационное титрование) – разновидность вольтамперометрического метода (наряду с полярографией). Оно основано на измерении величины тока между электродами электрохимической ячейки, к которым приложено некоторое напряжение, соответствующее величине предельного тока. По этим данным строят кривую амперометрического титрования в координатах «сила тока – объём титранта» и графически находят точку эквивалентности. В качестве индикаторного электрода в амперометрическом титровании обычно используют вращающиеся платиновые, графитовые и другие твердые электроды.

Примеры решения задач

Пример 1. При открытии катионов серебра Ag + реакцией с хлорид-ионами Сl – в водном растворе по образованию белого осадка хлорида серебра AgCl

Ag + + Cl – ® AgCl↓

предел обнаружения катионов серебра равен 0,1 мкг, предельное разбавление V lim = 1∙ 10 4 мл/г. Определите предельную концентрацию С lim и минимальный объём V min предельно разбавленного раствора.

Решение. Найдем предельную концентрацию С min:

C min = = = 1 ∙ 10 –4 г/мл.

Рассчитаем минимальный объём предельно разбавленного раствора:

V min = = = 0,001 мл.

Таким образом, предельная концентрация предельно разбавленного раствора С min = 1 ∙ 10 -4 г/мл и минимальный объём V min = 0,001 мл.

Пример 2. Катионы серебра Ag + можно открыть реакцией с хромат-ионами CrO по образованию красного осадка хромата серебра Ag 2 CrO 4

2 Ag + + CrO → Ag 2 CrO 4

при V min = 0,02 мл в водном растворе нитрата серебра AgNO 3 с молярной концентрацией С (AgNO 3) = 0,0004 моль/л. Определите предел обнаружения g и предельное разбавление V lim для катиона Ag + .

Решение. Найдем вначале предельную концентрацию катионов серебра, учитывая, что в условии задачи дана концентрация нитрата серебра, выраженная в моль/л:

C min = = = 4 ∙ 10 –5 г/мл,

где М (Ag +) – атомная масса серебра.

g = C min V min ∙ 10 6 = 4 ∙ 10 –5 ∙ 0,02 ∙ 10 6 = 0,8 мкг,

V lim = = = 2,5 ∙ 10 –4 мл/г.

Таким образом, предел обнаружения для катиона Ag + g = 0,8 мкг, а предельное разбавление V lim =2,5 ∙ 10 –4 мл/г.

Пример 3

Разделить с помощью группового реагента катионы Al +3 и Mg +2 .

Решение. Al +3 относится к катионам IV группы, а Mg +2 – V группы. Групповым реагентом на катионы IV и V групп является гидроксид натрия. В качестве аналитического сигнала наблюдается выпадение в осадок соответствующих гидроксидов:

Al +3 + 3ОН – ⇄ Al(ОН) 3 ↓;

Mg +2 + 2ОН – ⇄ Mg(ОН) 2 ↓.

Однако при добавлении избытка реагента Al(ОН) 3 растворяется с образованием комплексного соединения, а Mg(ОН) 2 – нет:

Al(ОН) 3 + NаОН ⇄ Nа;

Mg(ОН) 2 + NаОН ¹.

Таким образом, при разделении катион Al +3 будет находиться в фильтрате, а катион Mg +2 – в осадке.

Пример 4

Какой объём раствора AgNO 3 с массовой долей 2 % потребуется для осаждения хлорида из навески СаСl 2 ∙ 6 Н 2 О массой 0,4382 г?

Решение. Массу AgNO 3 вычисляем на основании закона эквивалентов.

В. Оствальда интересовали инструментальные методы анализа . В частности, он исследовал спектры поглощения различных растворов в видимой области и на 300 разных системах показал, что окраска раствора электролита в условиях полной Диссоциации определяется аддитивным поглощением света его ионами, большее практическое значение имела идея В. Оствальда, высказанная им в письме к С. Аррениусу еще в 1892 г. Речь шла о возможности прямого потенциометрического определения очень низких концентраций ионов металлов по электродвижущей силе подходящего гальванического элемента. Однако методики прямого потенциометрического анализа реальных объектов появились гораздо позже - уже в XX в.

К сожалению, в отечественных учебниках по аналитической химии имя В. Оствальда упоминается обычно лишь в связи с (законом разбавления и теорией индикаторов, другие его теоретические достижения излагаются без ссылок на автора. Но дело не в частностях. Необходимо признать, что именно В. Оствальд и его школа подняли химические методы анализа с эмпирического на более высокий, теоретически обоснованный уровень. Это позволило заранее подбирать оптимальные условия анализа и подходящие реагенты, а также прогнозировать систематические ошибки. Известный российский химик П. И. Вальден писал, что книги В. Оствальда являются настоящим руководством к открытиям по аналитической химии.

Недооценка значимости химико-аналитических (да и других) работ В. Оствальда в нашей стране может быть объяснена двумя относительно случайными обстоятельствами. Во-первых, философские идеи В. Оствальда вызывали ожесточенные споры, в которых его резко критиковали многие известные ученые и общественные деятели. В частности, В. И. Ленин считал Оствальда «очень крупным химиком и очень путаным философом». Отрицательное отношение к философским работам В. Оствальда вольно или невольно переносилось на его творчество в целом. Во-вторых, как один из создателей «физической» теории растворов В.Оствальд резко полемизировал с российскими химиками, преимущественно являвшимися сторонниками «химической» теории растворов (Д. И. Менделеев, Д. П. Коновалов, Н. Н. Бекетов и др.). Обе стороны допускали при этом излишне резкие высказывания. Позднее стало ясно, что по существу ни одна из сторон в этом споре не была полностью права, «химическая» и «физическая» теории растворов сблизились в исследованиях гидратации ионов (И. А. Каблуков), а потом и слились, но отголоски старой полемики все же чувствовались на протяжении всего XX в.

После ухода В. Оствальда в отставку (1906) и прекращения им активных исследований в области химии его ученики и последователи развивали теорию титриметрического анализа, причем они нередко советовались со своим учителем. В частности, были определены константы диссоциации множества индикаторов (Э.Зальм, 1907). Крупным достижением оствальдовской школы стало моделирование процесса титрования в виде кривых нейтрализации (Дж. Гильдебрандт, 1913). На этой основе можно было оценивать возможность титрования сильных и слабых электролитов, рассчитывать пределы разбавления и ошибки, связанные с неточным выбором индикаторов. Большое значение имела монография датчанина Нильса Бьеррума «Теория алкалиметрического и ациди-метрического титрования» (1914). В этой книге впервые появилась четкая рекомендация, какие именно кислоты и какие именно основания можно титровать с достаточно высокой точностью и Бьеррум теоретически доказал, что если константа диссоциации менее 10 -10 , титрование невозможно даже в относительно концентрированных растворах.

Наибольшее практическое значение для развития аналитической химии в те годы имело изобретение буферных растворов. В теоретическом отношении очень важным было введение понятия «водородный показатель» (рН). Оба новшества появились в результате использования оствальдовских идей о ионных равновесиях, но первыми использовали их не аналитики, а биохимики. В 1900 г. О. Фернбах и Л. Юбен исследовали активность некоторых ферментов при разной кислотности раствора и пришли к выводу, что относительное постоянство активности фермента при добавлении кислот или щелочей объясняется присутствием в том же растворе смеси моно- и дигидрофосфатов («смесь, подобно буферному диску вагона, ослабляет воздействие кислот и оснований»). Чуть позже венгерский биохимик П. Сили стал специально вводить в исследуемые пробы сыворотки крови буферные растворы с известной и приблизительно постоянной концентрацией водородных ионов. По-видимому, в практике химического анализа ацетатные и аммиачные буферные растворы первым стал применять Б. Фельс (ученик Нернста) в 1904 г.

Исследуя активность ферментов при разной кислотности растворов, датский биохимик Серен Сёренсен в 1909 г. установил, что изменение активности фермента определяется не природой добавляемой кислоты и даже не ее концентрацией, а концентрацией ионов водорода, создаваемой при добавлении кислоты. Расчеты ферментативной активности существенно упрощались, если в качестве аргумента использовали десятичный логарифм концентрации этих ионов, взятый с обратным знаком, т.е. водородный показатель. Правда, С. Сёренсен использовал округленные (целочисленные) значения рН. Несколько позднее были разработаны и достаточно точные методы измерения этого показателя. Они были основаны на применении набора цветных кислотно-основных индикаторов или на потенциометрических измерениях. В развитие обоих методов измерения рН существенный вклад внес молодой в ту пору (1921) голландский химик-аналитик Исаак Мориц Кольтгоф (1894-1997). Позднее (1927) он переехал в США, где в течение многих десятилетий был общепризнанным лидером американских химиков-аналитиков.

В 1926 г. И. М. Кольтгоф выпустил прекрасную монографию «Объемный анализ», которая обобщала теоретические основы титриметрического анализа в целом. Она имела для судьбы этого метода столь же важное значение, как в свое время монография Мора. Впоследствии на базе этой книги И. М. Кольтгоф составил двухтомное руководство по титриметрическому анализу, а затем и учебник по аналитической химии для студентов американских университетов.

В предисловии к монографии И. М. Кольтгоф писал: «То, что я осмеливаюсь в предлагаемой книге сводить воедино научные основы объемного анализа, оправдывается возможностью с помощью теоретических знаний не только улучшать известные методы, но и находить новые. Для этого нужно соответствующую реакцию, а также действие индикатора подробно рассмотреть с точки зрения закона действующих масс. Когда система находится в равновесии, математический разбор сравнительно просто определяет возможность титрования, нахождение оптимальных условий, а также ошибок титрования… Таким образом, новые методы не приходится искать чисто эмпирически, а большей частью их можно уже вывести теоретически». Кроме обобщения и экспериментальной проверки результатов, ранее полученных Дж. Гиллебрандтом, Э. Зальмом, Н. Бьеррумом и другими физикохимиками школы В.Оствальда, к которой идейно принадлежал и сам И. М. Кольтгоф, автор выдвинул немало новых положений, подтверждая их расчетами и экспериментами. Был проведен детальный математический анализ кривых титрования (высота скачка, расчет потенциала в точке эквивалентности, критерии раститровывания смесей и т.п.). Сопоставлены ошибки титрования, вызываемые разными факторами. При этом И. М. Кольтгоф считал, что надежные теоретические прогнозы можно делать лишь для реакций нейтрализации, осаждения и комплексообразования. Невысокая скорость достижения равновесия и ступенчатый характер многих процессов окисления-восстановления должны существенно снижать ценность теоретических прогнозов, относящихся к редоксметрии.

Теоретические основы окислительно-восстановительного титрования начал создавать Р. Петере в 1898 г. Он же проверил в многочисленных экспериментах применимость и правильность знаменитой формулы Нернста (1889), используемой для построения кривых редоксметрического титрования. В той же области успешно работали Ф. Кротоджино (реальные потенциалы, влияние рН) и другие авторы. Работы самого Кольтгофа в области редоксметрии также были связаны с уравнением Нернста, но автор детально рассмотрел кинетические аспекты редокс-процессов, в том числе каталитические эффекты и индуцированные реакции, исследовал факторы, влияющие на потенциал в точке эквивалентности. В других своих работах И. М. Кольтгоф фактически создал теорию потенциометрического и амперометрического титрования Да и сами термины «потенциометрическое титрование и «амперометрическое титрование» были введены в науку именно им. Сопоставляя книгу И. М. Кольтгофа по теории титриметрического анализа с соответствующими разделами сегодняшних учебников по аналитической химии, можно лишь удивляться насколько современными кажутся содержание и стиль книги, написанной 80 лет назад.

В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего, химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Сенсоры связаны с системой накопления и автоматической обработки информации.

Условно инструментальные методы анализа можно разделить на три группы: спектральные и оптические, электрохимические и хроматографические методы анализа.

Спектральные и оптические методы анализа основаны на взаимодействии определяемого вещества и электромагнитного излучения (ЭМИ). Методы классифицируются по нескольким признакам – принадлежности ЭМИ к определенной части спектра (УФ – спектроскопия, фотоэлектроколориметрия, ИК – спектроскопия), уровню взаимодействия веществ, с ЭМИ (атом, молекула, ядро атома), физическим явлением (эмиссия, абсорбция и т.д.). Классификация спектральных и оптических методов по основным признакам приведена в табл. 12.

Атомно-эмиссионная спектроскопия – группа методов анализа, основанных на измерении длины волны и интенсивности светового потока, излучаемого возбужденными атомами в газообразном состоянии.

Таблица 12.

Классификация спектральных и оптических методов

Физическое явление Уровень взаимодействия
Атом Молекула
Спектральные методы
Поглощение света (адсорбция) Атомно-адсорбционная спектроскопия (ААС) Молекулярно-адсорбционная спектроскопия (МАС): фотоэлектроколориметрия, спектрофотометрия
Излучение света (эмиссия) Атомно-эмиссионная спектроскопия (АЭС): фотометрия пламени Молекулярно-эмиссионная спектроскопия (МЭС): люминесцентный анализ
Вторичная эмиссия Атомно-флуорисцентная спектроскопия (АФС) Молекулярно- флуорисцентная спектроскопия (МФС)
Рассеивание света - Спектроскопия рассеяния: нефелометрия, турбидеметрия
Оптические методы
Преломление света - Рефрактометрия
Вращение плоскополяризованного света - Поляриметрия

При эмиссионном анализе определяемое вещество, находящееся в газовой фазе, подвергают возбуждению, сообщая системе энергию в виде ЭМИ. Энергия, необходимая для перехода атома из нормального в возбужденное состояние, называется энергией возбуждения (потенциалом возбуждения ) . В возбужденном состоянии атом находится 10 -9 – 10 -8 с, затем, возвращаясь на более низкий энергетический уровень, испускает квант света в строго определенной частоты и длины волны.

Фотометрия пламени – метод анализа, основанный на фотометрировании излучения возбужденных в пламени атомов. Вследствие высокой температуры в пламени возбуждаются спектры элементов, имеющие низкую энергию возбуждения, - щелочные и щелочноземельные металлы.

Качественный анализ проводят по окраске перлов пламени и характерным спектральным линиям элементов. Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии веществ тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь или бор), бледно-голубой (свинец или мышьяк).

Количественный анализ основан на эмпирической зависимости интенсивности спектральной линии определяемого элемента от его концентрации в пробе с использованием градуировочного графика.

Фотоэлектроколориметрия основана на поглощении света определяемым веществом в видимой области спектра (400 – 760 нм); это разновидность молекулярно-адсорбционной спектроскопии. В ходе анализа поток света, походя через светопоглощающий раствор, частично рассеивается, преломляется, но большая часть поглощается, и поэтому на выходе интенсивность потока света меньше, чем на входе. Этот метод применяют для качественного и количественного анализа истинных растворов.

Турбидиметрический метод основан на поглощении и рассеивании монохроматического света взвешенными частицами анализируемого вещества. Метод применяется для анализа суспензий, эмульсий, при определении в растворах, природных и технологических водах веществ (хлориды, сульфаты, фосфаты), способных образовывать труднорастворимые соединения.

К оптическим методам анализа относятся рефрактометрия и поляриметрия.

Рефрактометрический метод основан на преломлении света при прохождении луча через границу раздела прозрачных однородных сред. При падении луча света на границу раздела двух сред происходит частичное отражение от поверхности раздела и частичное распространение света в другой среде. Метод используют для идентификации и частоты веществ, количественного анализа.

Поляриметрия – оптический неспектральный метод анализа, основанный на вращении плоскополяризованного монохроматического луча света оптически активными веществами. Метод предназначен для качественного и количественного анализа только оптически активных веществ (сахарозы, глюкозы и др.), способных вращать плоскость поляризации света.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током. Эти методы делятся на три группы: методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия ); методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия ); методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия – высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые , основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные (установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и электрод сравнения. Электрод, потенциал которого зависит от активности определяемого ионов, называется индикаторным . Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения . Например, при определении рН растворов в качестве индикаторного электрода используют стеклянный электрод, а электрода сравнения – хлорсеребряный (см. тему 9).

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации (активности) ионов в растворе. При расчетах используют уравнение Нернста.

Вольтамперометрия – группа методов, основанных на процессах электрохимического окисления или восстановления определяемого вещества, протекающих на микроэлектроде и обусловливающих возникновение диффузного тока. Методы основаны на изучении вольтамперных кривых (вольтамперограмм), отражающих зависимость силы тока от приложенного напряжения. Вольтамперограммы позволяют одновременно получить информацию о качественном и количественном составе анализируемого раствора, а также о характере электродного процесса.

В методах вольтамперометрии применяют двух- и трехэлектродные ячейки. Индикаторные электроды – рабочие поляризуемые электроды, на которых протекают процессы электроокисления или электровосстановления вещества; электроды сравнения – электроды второго рода (насыщенные хлорсеребряный или каломельный).

Если в качестве рабочего поляризуемого электрода применяют ртутный капающий с постоянно обновляющейся поверхностью, а электродом сравнения служит слой ртути на дне ячейки, то метод называется полярографией .

В современной вольтамперометрии применяют любые индикаторные электроды (вращающиеся или стационарный платиновый или графитовый, стационарный ртутный), кроме капающего ртутного электрода.

Кондуктометрический метод основан на измеренииэлектрической проводимости растворов в зависимости от концентрации присутствующих заряженных частиц. Объекты анализа – растворы электролитов. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматогафические методы разделения, идентификации и количественного определения основаны на различных скоростях движения отдельных компонентов в потоке подвижной фазы вдоль слоя неподвижной фазы, причем анализируемые вещества находятся в обеих фазах. Эффективность разделения достигается за счет многократно повторяющихся циклов сорбция – десорбция. При этом компоненты по-разному распределяются между подвижной и неподвижной фазами в соответствии с их свойствами, в результате происходит разделение. Условно хроматографические методы можно разделить на газовую хроматографию, ионообменную и бумажную.

Газовая хроматография – метод разделения летучих термостабильных соединений, основанный на распределении веществ между фазами, одна из которых – газ, другая – твердый сорбент или вязкая жидкость. Разделение компонентов смеси происходит из-за различной адсорбционной способности или растворимости анализируемых веществ при движении их газообразной смеси в колонке с потоком подвижной фазы вдоль неподвижной фазы.

Объекты анализа в газовой хроматографии – газы, жидкости и твердые вещества с молекулярной массой менее 400 и температурой кипения менее 300 0 С. При хроматографическом разделении анализируемые соединения не должны подвергаться деструкции.

Ионообменная хроматография – метод разделения и анализа веществ, основанный на эквивалентном обмене ионов анализируемой смеси и ионообменника (ионита). Происходит обмен ионами между фазами гетерогенной системы. Неподвижной фазой являются иониты; подвижной, как правило, вода, так как обладает хорошими растворяющими и ионизирующими свойствами. Соотношение концентраций обменивающихся ионов в растворе и фазе сорбентов (ионита) определяется ионообменным равновесием.

Хроматография на бумаге относится к плоскостной хроматографии, она основана на распределении анализируемых веществ между двумя несмешивающимися жидкостями. В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

Вопросы для самоподготовки:

1. Что такое химическая идентификация вещества?

2. Какие виды анализа вам известны?

3. Что такое чистота веществ?

4. Как проводят идентификацию катионов неорганических веществ?

5. Как проводят идентификацию анионов неорганических веществ?

6. Как классифицируются методы количественного анализа?

7. Каковы основы гравиметрического метода анализа?

8. Какова характеристика титриметрических методов анализа?

9. Какова характеристика химических методов анализа?

10. Как классифицируют инструментальные методы анализа?

11. Каковы основы электрохимических методов анализа?

12. Каковы основы хроматографических методов анализа?

13. Каковы основы оптических методов анализа?

Литература:

1. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

2. Ахметов Н.С. Лабораторные и семинарские занятия по общей и неорганической химии. М.: Высшая шк. – 2003, 367 с.

3. Васильев В.П. Аналитическая химия. - М.: Высш. шк. – 1989, Ч. 1, 320 с, Ч. 2., 326 с.

4. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

5. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

6. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

7. Общая химия. Биофизичекая химия. Химия биогенных элементов./ Под ред Ю.А. Ершова - М.: Высш. шк. – 2002, 560 с.

8. Фролов В.В. Химия. – М.: Высш. шк. – 1986, 450 с.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

Электрохимические методы. К наиболее применимым электрохимическим методам анализа относятся потенциометрический, полярографический и кондуктометрический.

П о т е н ц и о м е т р и ч е с к и й м е т о д базируется на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах от концентрации ионов. Потенциалы металлических электродов определяются уравнением Нернста

Соответственно по значению потенциала можно судить о концентрации ионов. Измерительная ячейка состоит из измерительного (индикаторного) электрода и электрода сравнения, который не чувствителен к определяемому веществу.

Все более широкое применение находят и о н о с е л е к т и в н ы е электроды, на границах раздела фаз которых протекают ионообменные реакции. Потенциал ионоселективного электрода зависит от активности, а в разбавленных растворах – от концентрации ионов в соответствии с уравнением Нернста. Наиболее широко известны ионселективные стеклянные электроды для измерения рН. На поверхности стеклянного электрода происходит реакция ионного обмена

Кt ст + +Н р + Н ст + +Кt р +

Кt ст – катионы стекла (К + , Na + , Li +), индекс р означает раствор.

На границе стекла и раствора возникает скачок потенциала, величина которого зависит от активности ионов водорода

Измерительная ячейка со стеклянным и вспомогательным электродами соединена с прибором рН-метром, предназначенным для измерения рН растворов.

Промышленностью также выпускаются ионселективные электроды для определения концентрации ионов Na + ,K + , NH 4 + , Cl - (предел определения 10 -1 – 10 -6 моль/л) и ионов Ca 2+ , Mg 2+ ,NO 3 - (предел определения 10 -1 – 10 -4 моль/л).

Кондуктометрия. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматографический анализ. Анализ основан на хромотографии, позволяющей разделять двух-, и многокомпонентные смеси газов, жидкостей и растворенных веществ методами сорбции в динамических условиях. Анализ производится с помощью специальных приборов – хроматографов. Разработано несколько методов анализа, которые классифицируются по механизму процесса и природе частиц (молекулярная, ионообменная, осадительная, распределительная хроматография) и по формам применения (колоночная, каппилярная, тонкослойная и бумажная). Молекулярная хроматография основана на различной адсорбируемости молекул на адсорбентах, ионообменная хроматография – на различной способности к обмену ионов раствора. В осадительной хроматографии используется различная растворимость осадков, образуемых компонентами анализируемой смеси при взаимодействии с реактивами, нанесенными на носитель. Распределительная хроматография базируется на различном распределении веществ между двумя несмешивающимися жидкостями. Молекулярная (жидкостная адсорбционная), ионообменная и осадительная хроматография обычно проводятся в хроматографических колонках соответственно с адсорбентом, ионообменным материалом или инертным носителем с реагентом. Распределительная хроматография, как правило, выполняетя на бумаге или на тонком слое абсорбента.

К достоинствам хроматографического метода анализа относятся быстрота и надежность, возможность определения нескольких компонентов смеси или раствора.

Оптические методы анализа. Эти методы основаны на измерении оптических свойств веществ и излучений, взаимодействия электромагнитного излучения с атомами или молекулами анализируемого вещества, вызывающего излучение, поглощение или отражение лучей. Они включают в себя эмиссионные, люминесцентные и абсорбционные спектральные методы.

Методы, основанные на изучении спектров излучения получили название э м и с с и о н- н ы х с п е к т р а л ь н ы х м е т о д о в анализа. В методе эмиссионной спектроскопии проба вещества нагревается до очень высоких температур (2000-15000 С). Вещество, испаряясь, диссоциирует на атомы или ионы, которые дают излучение. Проходя через спектограф, излучение разлагается на компоненты в виде спектра цветных линий. Сравнение этого спектра со справочными данными о спектрах элементов позволяет определить вид элемента, а по интенсивности спектральных линий – количество вещества. Метод дает возможности определять микро- и ультрамикро-количества вещества, анализировать несколько элементов, причем за короткое время.

Разновидностью эмиссионного анализа является э м и с с и о н н а я п л а м е н н а я

ф о т о м е т р и я, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени судят о виде вещества, а по интенсивности окрашивания пламени – о концентрации вещества. Анализ выполняют с помощью прибора – пламенного фотометра. Метод в основном используется для анализа щелочных, щелочно-земельных металлов и магния.

Методы, основанные на свечении анализируемого вещества под воздействием ультрафиолетовых (фотолюминесценция), рентгеновских (рентгенолюминесценция) и радиоактивных (радиолюминесценция) лучей назвают л ю м и н е с ц е н т н ы м и. Некоторые вещества обладают люминесцентными свойствами, другие вещества могут люминесцировать после обработки специальными реактивами. Люминесцентный метод анализа характеризуется очень высокой чувствительностью (до 10 -10 – 10 -13 г люминесцирующих примесей).

Методы, основанные на изучении спектров поглощения лучей анализируемыми веществами, получили название а б с о р б ц и о н н о – с п е к т р а л ь н ы х. При прохождении света через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества.

В соответствии с законом Бугера – Ламберта – Бера зависимость изменения интенсивности потока света, прошедшего через раствор, от концентрации окрашенного вещества в растворе с выражается уравнением

Lg (I 0 / I )= lc

где I 0 и I – интенсивность потока света, падающего на раствор и прошедшего через раствор,  - коэффициент поглащения света, зависящий от природы растворенного вещества (молярный коэффициент поглощения); l – толщина слоя светопоглащающего раствора.

Измерив изменение интенсивности потока света, можно определить концентрацию анализируемого вещества. Определение ведут с помощью спектрофотометров и фотоколориметров.

В с п е к т р о ф о т о м е т р а х используют монохроматическое излучение, а в ф о т о к о л о р и м е т р а х - видимый свет. Сравнивают полученные при измерении данные с градуированными графиками, построенными на стандартных растворах.

Если измеряют поглощение лучей атомами определяемого компонента, которые получают распылением раствора анализируемого вещества в пламени горелки, то метод называют а т о м н о – а б с о р б ц и о н н ы м (атомно-абсорбционная спектроскопия). Метод позволяет анализировать вещества в очень малых количествах.

Оптический метод, основанный на отражении света твердыми частицами, взвешенными в растворе, называется н е ф е л о м е т р и ч е с к и м . Анализ проводится с помощь приборов нефелометров.

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

Предлагаем зипс 3 купить в москве с монтажом

Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...