История числа пи простыми и понятными словами. Некоторые интересные факты. Чему равно число Пи? Методы его вычисления

История числа "пи"

История числа p, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. p = 3,160...
В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным, что даёт дробь 3,162...
Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.

Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:

    Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;

    Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ;

    Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .

Последнее предложение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. Сначала он удвоил число сторон правильных описанного и вписанного шестиугольников, затем двенадцатиугольников и т.д., доведя вычисления до периметров правильного вписанного и описанного многоугольников с 96 сторономи. По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, чтоp = 3,1419... Истинное значение этого отношения 3,1415922653...
В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа:3,1415927...
Впервой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил p с 16 десятичными знаками. Он сделал 27 удвоений числа сторон многоугольников и дошёл до многоугольника, имеющего 3*2 28 углов. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1" . Эти таблицы сыграли важную роль в астрономии.
Спустя полтора столетия в Европе Ф.Виет нашёл число p только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что p можно отыскать, исользуя пределы некоторых рядов. Это открытие имело большое значение, так как позволило вычислить p с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.
Первым ввёл обозначение отношения длины окружности к диаметру современным символом p английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало обшеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г.
В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число p иррационально. Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Из последнего следует, что с помощью только циркуля и линейки построить отрезок, равный по длине окружности, н е в о з м о ж н о , а следовательно, не существует решения задачи о квадратуре круга.
Поиски точного выражения p продолжались и после работ Ф.Виета . В начале XVII в. голландский математик из Кёльна Лудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа .
К концу XIX в., после 20 лет упорного труда, англичанин Вильям Шенкс нашёл 707 знаков числа p . Однако в 1945 г. обнаружено с помощью ЭВМ, что Шенкс в своих вычислениях допустил ошибку в 520-м знаке и дальнейшие его вычисления оказались неверными.
После разработки методов дифференциального и интегрального исчисления было найдено много формул, которые содержат число "пи". Некоторые из этих формул позволяют вычислить "пи" приёмами, отличными от метода Архимеда и более рациональными. Например, к числу "пи" можно прийти, отыскивая пределы некоторых рядов. Так, Г.Лейбниц (1646-1716) получил в 1674 г. ряд

1-1/3+1/5-1/7+1/9-1/11+... =p /4 ,

который дал возможность вычислить p более коротким путём, нежели Архимед . Всё же указанный ряд сходится очень медленно и поэтому требует довольно продолжительных расчётов. Для вычисления "пи" удобнее использовать ряд, получаемый от разложения arctgx при значении x =1/ , при котором разложение функции arctg 1/=p /6 в ряд даёт равенство

p /6 = 1/ ,
т.е.
p = 2

Частично суммы этого ряда можно вычислять по формуле

S n+1 = S n + (2)/(2n+1) * (-1/3) n ,

при этом "пи" будет ограничено двойным неравенством:

Ещё более удобную формулу для вычисления p получил Дж.Мачин . Пользуясь этой формулой, он вычислил p (в 1706 г.) с точностью до 100 верных знаков. Хорошее приближение для "пи" даёт выражение

Однако следует помнить, что это равенство надо рассматривать как приближённое, т.к. правая часть его - число алгебраическое, а левая - трансцендентное, следовательно, эти числа равными быть не могут.
Как указала в своих статьях Э.Я.Бахмутская (60-ые годы XX столетия), ещё в XV-XVI вв. южноиндийские учёные, в том числе Нилаканта , пользуясь приёмами приближённых вычислений числа p , нашли способ разложения arctgx в степенной ряд, подобный ряду, найденному Лейбницем . Индийские математики дали словесную формулировку правил для разложения в ряды синуса и косинуса . Этим они предвосхитили открытие европейских математиков XVII в. Тем не менее их изолированные и ограниченные практическими потребностями вычислительные работы никакого влияния на дальнейшее развитие науки не оказали.
В наше время труд вычислителей заменили ЭВМ. С их помощью число "пи" вычислено с точностью более миллиона знаков после запятой, причём эти вычисления продолжались только несколько часов.
В современной математике число p - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул, в том числе и в формулы неевклидовой геометрии, и формулу Л.Эйлера , которая устанавливает связь числа p и числа e следующим образом:

e 2 p i = 1 , где i = .

Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа p .

14 марта во всем мире отмечают весьма необычный праздник – день числа Пи. Еще со школьной скамьи оно всем известно. Учащимся сразу объясняют, что число Пи - это математическая константа, отношение длины окружности к ее диаметру, которая имеет бесконечное значение. Оказывается, что с этим числом связано немало любопытных фактов

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой "π" число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение. Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни. Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документуПи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.

"Пи" в перспективе

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. День числа Пи отмечают не то чтобы оригинально, но весело. Конечно, не пропускают его ученые, занимающие точными науками. Для них это - способ не отрываться от любимого дела, а заодно расслабиться. В этот день люди собираются и готовят разные вкусности с изображением Пи. Особенно есть где разгуляться кондитерам. Они могут делать торты с надписями в виде числа «пи» и печенье похожей формы. Отведав лакомства, математики устраивают разные викторины.

11. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн, создавший, как известно, теорию относительности. Как бы то ни было, физики тоже могут присоединиться к празднованию Дня числа Пи.

Число пи - математическая константа, равная отношению длины окружности к ее диаметру. Число пи является, цифровое представление которого является бесконечной непериодической десятичной дробью - 3,141592653589793238462643... и так до бесконечности.

    100 знаков после запятой: 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

История уточнения значения числа пи

В каждой книге по занимательной математике вы непременно найдете историю уточнения значения числа пи. Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и эпоху Возрождения европейские, индийские и арабские математики уточнили значение пи до 40 знаков после десятичной точки, а к началу компьютерной эпохи усилиями многих энтузиастов количество знаков было доведено до 500.

Такая точность имеет чисто академический интерес (об этом ниже), а для практических нужд в пределах Земли достаточно 10 знаков после запятой. При радиусе Земли 6400 км или 6,4·10 9 мм, получится, что, отбросив двенадцатую цифру пи после запятой, мы при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины земной орбиты вокруг Солнца (ее радиус 150 млн км = 1,5·10 14 мм) для такой же точности достаточно использовать число пи с четырнадцатью знаками после запятой. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца. Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков пи. Да что уж там мелочиться, диаметр нашей Галактики около 100 тыс. световых лет (1 световой год примерно равен 10 13 км) или 10 19 мм, а ведь еще в XVII веке были получены 35 знаков пи, избыточные даже для таких расстояний.

В чем же сложность вычисления значения числа пи? Дело в том, что оно не только иррациональное, то есть, его нельзя выразить в виде дроби p/q, где p и q целые числа. Такие числа нельзя записать точно, их можно вычислять только методом последовательных приближений, увеличивая число шагов для получения большей точности. Самый простой путь - рассматривать вписанные в окружность правильные многоугольники со все возрастающим числом сторон и вычислять отношение периметра многоугольника к его диаметру. С ростом числа сторон, это отношение стремиться к числу пи. Именно так в 1593 году Адриан ван Ромен вычислил периметр вписанного правильного многоугольника с 1073741824 (т.е. 2 30) сторонами и определил 15 знаков пи. В 1596 году Лудольф ван Цейлен получил 20 знаков, рассчитав вписанный многоугольник с 60·2 33 сторонами. Впоследствии он довел вычисления до 35 знаков.

Другой путь вычисления пи - использование формул с бесконечным числом членов. Например:

π = 2 · 2/1 · (2/3 · 4/3) · (4/5 · 6/5) · (6/7 · 8/7) · ...

π = 4 · (1/1 - 1/3) + (1/5 - 1/7) +(1/9 - 1/11) + ...

Подобные формулы можно получить, раскладывая, например, арктангенс в ряд Маклорена, зная, что

arctg(1) = π/4 (поскольку что tg(45°) = 1)

или раскладывая в ряд арксинус, зная, что

arcsin(1/2) = π/6 (катет, лежащий против угла в 30°).

В современных расчетах применяются еще более эффективные методы. С их помощью на сегодня.

День числа пи

День числа пи отмечается некоторыми математиками 14 марта в 1:59 (в американской системе записи дат - 3/14; первые разряды числа π = 3,14159). Обычно празднуют в 1:59 дня (в 12-часовой системе), но придерживающиеся 24-часовой системы света времени считают, что это 13:59, и предпочитают отмечать ночью. В это время читают хвалебные речи в честь числа пи, его роли в жизни человечества, рисуют антиутопические картины мира без пи, едят пи-рог (pie ), пьют напитки и играют в игры, начинающиеся на «пи».

  • Пи (число) - Википедия

Прежде чем рассказывать об истории числа Пи , отметим, что число Пи - это одна из самых загадочных величин математики. В этом Вы сейчас убедитесь сами, мой дорогой читатель...

Начнём наш рассказ с определения. Итак, число Пи - отвлеченное число , обозначающее соотношение длины окружности к длине её диаметра. Это определение знакомо нам ещё со школьной скамьи. Но вот дальше уже начинаются загадки...

Вычислить до конца эту величину невозможно, она равна 3,1415926535 , далее после запятой – до бесконечности. Учёные считают, что последовательность цифр не повторяется, причём эта последовательность абсолютно случайна...

Загадка числа Пи на этом не заканчивается. Астрономы уверены, что тридцать девять знаков после запятой в данном числе достаточно для того, что вычислить длину окружности, которая опоясывает известные космические объекты во Вселенной, с погрешностью в радиус атома водорода…

иррационально , т.е. его нельзя выразить дробью. Эта величина трансцедентна – т.е. её нельзя получить, произведя какие-либо действия над целыми числами….

Число Пи тесно связано с понятием золотого сечения. Археологи выяснили, что высота Великой Пирамиды в Гизе относится к длине её основания, именно также как радиус окружности к её длине…


История числа П так же остаётся загадкой. Известно, что ещё строители использовали эту величину для проектирования. Сохранились, возрастом в несколько тысяч лет, которые содержали задачи, решение которых предусматривало использование числа Пи. Однако мнение о точном значении этой величины среди учёных разных стран было неоднозначным. Так в городе Сузы, расположенном в двустах километрах от Вавилона, была найдена табличка, где число Пи указывалось как 3 ¹/8 . В Древнем Вавилоне было обнаружено, что радиус окружности в качестве хорды входит в неё шесть раз, именно там впервые было предложено поделить круг на 360 градусов. Отметим к слову, что аналогичное геометрическое действие было сделано и с орбитой Солнца, что навело древних учёных на мысль, что в году должно быть примерно 360 дней. Однако, вот в Египте число Пи было равно 3,16 , а в древней Индии – 3, 088 , в древней Италии – 3,125 . же считал, что эта величина равна дроби 22/7 .

Наиболее точно число Пи было вычислено китайским астроном Цзу Чунь Чжи в V веке н.э . Для этого он дважды написал нечётные числа 11 33 55, затем разделил их пополам, первую часть поместил в знаменатель дроби, а вторую часть – в числитель, таким образом получилась дробь 355/113 . Что удивительно, значение совпадает с современными вычислениями вплоть до седьмого знака…

Кто же дал первое официальное название этой величине?

Считается, что в 1647 году математик Оутрейд назвал греческой буквой π длину окружности, взяв для этого первую букву греческого слова περιφέρεια - «периферия» . Но в 1706 году вышла работа английского преподавателя Ульяма Джонса «Обозрение достижений математики», в которой он обозначал буквой Пи уже отношение длины окружности к её диаметру. Окончательно данный символ был закреплён в XX веке математиком Леонардом Эйлером .

С тех пор, как у людей появилась возможность считать и они начали исследовать свойства абстрактных объектов, называемых числами, поколения пытливых умов совершали завораживающие открытия. По мере того как наши знания о числах увеличивались, некоторые из них привлекали особое внимание, а некоторым даже придавали мистические значения. Был, который обозначает ничего, и который при умножении на любое число дает себя. Была, начало всего, также обладающая редкостными свойствами, простые числа. Затем обнаружили, что существуют числа, которые не являются целыми, а иногда получаются в результате деления двух целых чисел, - числа рациональные. Иррациональные числа, которые не могут быть получены как отношение целых чисел, и т.д. Но если и есть число, которое очаровало и вызвало написание массы трудов, то это (пи). Число, которое, несмотря на долгую историю, не называли так, как мы называем его сегодня, до восемнадцатого века.

Начало

Число пи получается делением длины окружности на ее диаметр. При этом размер окружности не важен. Большая или маленькая, отношение длины к диаметру одно и то же. Хотя вполне вероятно, что это свойство было известно ранее, самые первые свидетельства об этом знании - Московский математический папирус 1850 г. до н.э. и папирус Ахмеcа 1650 г. до н.э. (хотя это копия более старого документа). В нем имеется большое количество математических задач, в некоторых из которых приближается как, что чуть более чем на 0,6\% отличается от точного значения. Примерно в это же время вавилоняне считали равным. В Ветхом Завете, написанном более десяти столетий спустя, Яхве не усложняет жизнь и божественным указом устанавливает, что в точности равно.

Однако великими исследователями этого числа были древние греки, такие как Анаксагор, Гиппократ из Хиоса и Антифон из Афин. Ранее значение определялось, почти наверняка, с помощью экспериментальных измерений. Архимед был первым, кто понял, как теоретически оценить его значение. Использование описанного и вписанного многоугольников (больший описан около окружности, в которую вписан меньший) позволило определить, что больше и меньше. С помощью метода Архимеда другие математики получили лучшие приближения, и уже в 480 г. Цзу Чунчжи определил, что значения находится между и. Тем не менее метод многоугольников требует много вычислений (напомним, что все делалось вручную и не в современной системе счисления), так что у него не было будущего.

Представления

Нужно было дождаться XVII века, когда с открытием бесконечного ряда свершилась революция в вычислении, хотя первый результат не был рядом, это было произведение. Бесконечные ряды - это суммы бесконечного числа членов, образующих некоторую последовательность (например, все числа вида, где принимает значения от до бесконечности). Во многих случаях сумма конечна и может быть найдена различными методами. Оказывается, что некоторые из этих рядов сходятся к или некоторой величине, имеющей отношение к. Для того чтобы ряд сходился, необходимо (но не достаточно), чтобы с ростом суммируемые величины стремились к нулю. Таким образом, чем больше чисел мы складываем, тем точнее мы получаем значение. Теперь у нас есть две возможности получения более точного значения. Или сложить больше чисел, или найти другой ряд, сходящийся быстрее, так чтобы складывать меньшее количество чисел.

Благодаря этому новому подходу точность вычисления резко возросла, и в 1873 году Уильям Шенкс опубликовал результат многолетней работы, приведя значение с 707 десятичными знаками. К счастью, он не дожил до 1945 года, когда было обнаружено, что он сделал ошибку и все цифры, начиная с, были неправильными. Тем не менее, его подход был наиболее точным до появления компьютеров. Это была предпоследняя революция в вычислении. Математические операции, которые при выполнении их вручную занимают несколько минут, в настоящее время выполняются в доли секунды, причем ошибки практически исключены. Джону Ренчу и Л. Р. Смиту удалось вычислить 2000 цифр за 70 часов на первом электронном компьютере. Барьер в миллион цифр был достигнут в 1973 году.

Последнее (на данный момент) достижение в вычислении - открытие итерационных алгоритмов, которые сходятся к быстрее, чем бесконечные ряды, так что можно достичь намного более высокой точности при той же вычислительной мощности. Текущий рекорд составляет чуть более 10 триллионов верных цифр. Зачем же так точно вычислять? Учитывая, что, зная 39 цифр этого числа, можно вычислить объем известной Вселенной с точностью до атома, не за чем… пока.

Некоторые интересные факты

Однако вычисление значения является лишь малой частью его истории. Это число обладает свойствами, благодаря которым эта константа столь любопытна.

Возможно, самой большой проблемой, связанной с, является известная задача о квадратуре круга, задача о построении с помощью циркуля и линейки квадрата, площадь которого равна площади данного круга. Квадратура круга мучила поколения математиков в течение двадцати четырех столетий, пока фон Линдеман не доказал, что - трансцендентное число (оно не является решением никакого полиномиального уравнения с рациональными коэффициентами) и, следовательно, невозможно объять необъятное. До 1761 г. не было доказано, что число иррациональное, то есть что не существует двух натуральных чисел и таких, что. Трансцендентность не была доказана до 1882 года, однако пока неизвестно, являются ли числа или (- это еще одно иррациональное трансцендентное число) иррациональными. Появляется много соотношений, которые не связаны с окружностями. Это часть коэффициента нормализации нормальной функции, видимо, наиболее широко используемой в статистике. Как уже упоминалось ранее, число появляется как сумма многих рядов и равно бесконечным произведениям, оно важно и при изучении комплексных чисел. В физике его можно найти (в зависимости от применяемой системы единиц) в космологической постоянной (самая большая ошибка Альберта Эйнштейна) или константе постоянного магнитного поля. В системе счисления с любым основанием (в десятичной, двоичной…), цифры проходят все тесты на случайность, не наблюдается никакого порядка или последовательности. Дзета-функция Римана тесно связывает число с простыми числами. Это число имеет долгую историю и наверняка до сих пор хранит множество сюрпризов.

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C 1 C 2
=
d 1 d 2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π . Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π :

C = π d.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2π R.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

Откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

8 2
S = ( d )
9

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

Какое из двух числе больше 22/7 или 3.14 ?
- Они равны.
- Почему?
- Каждое из них равно π .
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π .

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π . В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

10 6336 14688 1
3 < < π < < 3
71 1 1 7
2017 4673
4 2

можно записать проще: 3,140 909 < π < 3,1 428 265...

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после запятой: 3,14... Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π , это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

π D 2
S=π R 2 =
4

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 π R = π d,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

где D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

α
S = π R 2
360 ˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Tatiana Durimanova

Я создала на Facebook страницу b назвала ее «Язык как философия жизни». Вообще-то мне хотелось назвать ее «Записки из сумасшедшего дома», ибо что иное, как не сумасшедший дом представляет собой наша современная жизнь? Нет, я не собираюсь говорить о том, что все куда-то бегут, что-то не успевают сделать, чего-то вечно не хватает: времени, денег, и т.д. Что нас захлестнула волна непонимания того, что происходит вокруг, куда катится мир…
Крутимся, как белки в колесе. Ощущаем, что бежим по замкнутому кругу. Теряем круг друзей, попадаем в порочный круг… Знакомо? А утро-день-вечер-ночь, и снова по кругу. Весна-лето-осень-зима, и опять по кругу.
Кстати, кто может точно сказать в какое конкретно время утро сменят ночь, зима, весну? Можно ли вообще проводить четкую разделительную грань между курицей и яйцом, и разделимы ли они? Может лучше признать, что яйцо – это потенциальная курица, курица – это потенциальное яйцо, и они не разделимы. Где кончаюсь я и начинаются мои проблемы, проблемы моих детей, друзей и пр., становящихся моими, просто потому, что мы живем в одной квартире, доме, городе, мире? Разве Господь-Бог сказал нам, что ноль часов нужно определять по Гринвичу, что меня нужно назвать Татьяной, а стул стулом? Где кончается мир реальный (вещественный), и начинается мир, выдуманный нами?
Земля вращается вокруг оси и по орбите (кругу, эллипсу – какая разница?). Галактики вращаются. Ученые открыли торсионные поля, доказали, что … «согласно теории относительности Альберта Эйнштейна, мир устроен не совсем так [как нас учили и учат в школе]), в нём наблюдается искривление пространства, так что две прямые, которые на данном участке пространства параллельны, на каком-то отрезке своей протяжённости, могут пересекаться. Недавно предположение Эйнштейна об искривлении пространства было подтверждено экспериментально» (Александр Бабицкий).
А мы все движемся из пункта А в пункт В, полагая, что они находятся на прямой линии.
И чего это меня, лингвиста, занесло в физику, спросите вы? Да потому что все вокруг нас, и в нас самих и есть физика. Язык есть физика. Разве звук не относится к области физики? А теперь скажите мне, что такое гласный звук? Я вам предлагаю «милое» для 21 века определение звуков: «Звуки мы произносим и слышим, а буквы пишем и видим. При произнесении гласного звука воздух не встречает преград: [а], [о], [у], [и], [ы], [э]. При произнесении согласного звука воздух встречает преграду: губы, зубы, язык. Согласный звук произносится с голосом и шумом или только с шумом.»
В принципе, все верно. Вы можете просто мычать «гласным звуком», не размыкая губ. Мычите на здоровье. А вот если, вы губы разомкнули, то у вас получаются знакомые нам всем звуке, «а», «э», которые различаются лишь степенью округленности, растягивания или вытягивания в трубочку губ. Согласны? Это как арбуз, который можно нарезать ломтиками, кубиками, фигурками, но он ведь не перестает оставаться арбузом!!! И в какой момент звук «а» превращается в «о»? Разве есть четкая граница? Конечно, на качество гласного звука может повлиять положение языка (задние звуки), опускание челюсти, опять же с соответствующим положением языка, но это все тот же арбуз, нарезанный фигурками.
Согласный звук есть барьер на пути гласного звука. Чем можно создать такой барьер? Читайте выше: губами, зубами, языком. Другими словами, инструментарий речи довольно ограничен, но какое обилие языков!!! (А как вам нравятся 7 нот и такое обилие музыки?)
Теперь давайте задумаемся, у кошки этот инструментарий есть, и у собаки, и у дельфина, да и вообще рыб, и т.д.…
«Ну и заехала», — скажете вы. Да, заехала! А разве не было времени, когда Землю считали блином? А разве электричество не существует просто потому, что мы его не видим и не слышим? Если доказано, что вакуума нет, значит есть все, но это все может быть различимо, опять же, в зависимости от инструментария, который мы используем для рассмотрения и изучения объекта. По мере его совершенствования, мы узнаем все больше нового, чего раньше даже и помыслить не могли.
Язык есть формализация мысли. А где формализуется мысль? Что мы знаем о нашем мире, о самих себе? Мы ищем иные миры, не зная собственного! В этом-то и заключается проблема!
Что мы знаем о языке, кроме того, что он формализуется в звуках. Пожалуйста, формализуйте – куммммарама. Что это? Ничего, потому что гласный звук может «нести на себе» лишь определенное количество согласных звуков, также как я, при моем весе в 50 кг не смогу поднять груз в 150 кг. Физика, понимаете ли!
Теперь обратимся к кривизне пространства и кругу, с которых мы начали. Допустим, мы усомнились в том, что язык развивается не по спирали (в плане контекста), а прямолинейно, и я сообщаю вам, что «в нашем большом городе есть главная улица пересекающая весь город на которой растет много деревьев ходит много людей…». Дурость, скажите вы, где здесь знаки препинания? Где запятые и точки?
Но что есть знаки препинания? Они и есть знаки разделения между подлежащим-сказуемым дополнением (с относящимися к ним определениями) одного предложения и начала другого. Причастие есть ни что иное, как умножение: которая проходит = проходящая, в то время как разворачивание «проходящая» на «которая проходит» – это уже деление. А это уже математика! Ничего удивительного. Мир неделим. Это целостность. Язык тоже – целостность. Нам просто пора взглянуть на все по-новому. Проснуться и оглядеться. Учить детей не правилам, наподобие «Существует отдельная группа слов — предикативы (или категория состояния). Это слова, обозначающие нединамическое состояние и выступающие в функции главного члена (сказуемого, предиката) односоставного безличного предложения. Учёные до сих пор не определились относительно статуса слов категории состояния. Так вот слово НАДО наряду с другими словами (жаль, охота, недосуг, пора и др.) входит в эту группу слов.»
Вы поняли, о чем это? Я нет! Для кого это написано? Наверное, для учеников. Бедные ученики! Если даже ученые до сих пор чего-то там не поняли, то как это должны понимать дети? Интересно, учителя, хотя бы, выучили наизусть такое определение?
Вот для этого я и создала свой канал на YouTube, чтобы просто (человеческим языком) рассказать о главном – о языке.
Если по прочтению, вам все это (написанное, кстати наспех), покажется бредом, не спешите сообщать мне о том, что я ненормальная. Я ведь и назвала это записками и сумасшедшего дома. Если вам это кажется ненормальным, значит вы живете в доме – напротив. Я его определять не собираюсь. Живем в стране победившей демократии и … ценностей. Каждый имеет право на свое мнение.

Увлеченные математикой люди по всему миру ежегодно съедают по кусочку пирога четырнадцатого марта - ведь это день числа Пи, самого известного иррационального числа. Эта дата напрямую связана с числом, первые цифры которого 3,14. Пи - это соотношение длины окружности к диаметру. Так как оно иррациональное, записать его в виде дроби невозможно. Это бесконечно длинное число. Его обнаружили тысячи лет назад и с тех пор постоянно изучают, но остались ли у Пи какие-нибудь секреты? От древнего происхождения до неопределенного будущего вот несколько наиболее интересных фактов о числе Пи.

Запоминание Пи

Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр - он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр - этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Существует язык Пи

Увлеченные литературой математики изобрели диалект, в котором число букв во всех словах соответствует цифрам Пи в точном порядке. Писатель Майк Кит даже написал книгу Not a Wake, которая полностью создана на языке Пи. Энтузиасты такого творчества пишут свои произведения в полном соответствии количества букв значению цифр. Это не имеет никакого прикладного применения, но является достаточно распространенным и известным явлением в кругах увлеченных ученых.

Экспоненциальный рост

Пи - это бесконечное число, поэтому люди по определению не смогут никогда установить точные цифры этого числа. Однако количество цифр после запятой сильно увеличилось со времен первого использования Пи. Еще вавилоняне им пользовались, но им было достаточно дроби в три целых и одну восьмую. Китайцы и создатели Ветхого Завета и вовсе ограничивались тройкой. К 1665 году сэр Исаак Ньютон вычислил 16 цифр Пи. К 1719 году французский математик Том Фанте де Ланьи вычислил 127 цифр. Появление компьютеров радикальным образом улучшило знания человека о Пи. С 1949 года по 1967-й количество известных человеку цифр стремительно выросло с 2037 до 500 000. Не так давно Петер Труэб, ученый из Швейцарии, смог вычислить 2,24 триллиона цифр Пи! На это потребовалось 105 дней. Разумеется, это не предел. Вполне вероятно, что с развитием технологий будет возможно установить еще более точную цифру - так как Пи бесконечно, предела точности просто не существует, и ограничить ее могут лишь технические особенности вычислительной техники.

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику - вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

Открытие Пи

Древние вавилоняне знали о существовании числа Пи уже четыре тысячи лет назад. Вавилонские таблички исчисляют Пи как 3,125, а в египетском математическом папирусе встречается число 3,1605. В Библии число Пи дается в устаревшей длине - в локтях, а греческий математик Архимед использовал для описания Пи теорему Пифагора, геометрическое соотношение длины сторон треугольника и площади фигур внутри и снаружи кругов. Таким образом, можно с уверенностью сказать, что Пи является одним из наиболее древних математических понятий, хоть точное название данного числа и появилось относительно недавно.

Новый взгляд на Пи

Еще до того, как число Пи стали соотносить с окружностями, у математиков уже было множество способов даже для наименования этого числа. К примеру, в старинных учебниках по математике можно найти фразу на латыни, которую можно грубо перевести как «количество, которое показывает длину, когда на него умножается диаметр». Иррациональное число прославилось тогда, когда швейцарский ученый Леонард Эйлер использовал его в своих трудах по тригонометрии в 1737 году. Тем не менее греческий символ для Пи все еще не использовали - это произошло только в книге менее известного математика Уильяма Джонса. Он использовал его уже в 1706 году, но это долго оставалось без внимания. Со временем ученые приняли такое наименование, и теперь это наиболее известная версия названия, хотя прежде его называли также лудольфовым числом.

Нормальное ли число Пи?

Число Пи определенно странное, но насколько оно подчиняется нормальным математическим законам? Ученые уже разрешили многие вопросы, связанные с этим иррациональным числом, но некоторые загадки остаются. К примеру, неизвестно, насколько часто используются все цифры - цифры от 0 до 9 должны использоваться в равной пропорции. Впрочем, по первым триллионам цифр статистика прослеживается, но из-за того, что число бесконечное, доказать точно ничего невозможно. Есть и другие проблемы, которые пока ускользают от ученых. Вполне возможно, что дальнейшее развитие науки поможет пролить на них свет, но на данный момент это остается за пределами человеческого интеллекта.

Пи звучит божественно

Ученые не могут ответить на некоторые вопросы о числе Пи, тем не менее с каждым годом они все лучше понимают его суть. Уже в восемнадцатом веке была доказана иррациональность этого числа. Кроме того, было доказано, что число является трансцендентным. Это означает, что нет определенной формулы, которая позволила бы подсчитать Пи с помощью рациональных чисел.

Недовольство числом Пи

Многие математики просто влюблены в Пи, но есть и те, кто считает, что у этих цифр нет особенной значимости. Кроме того, они уверяют, что число Тау, которое в два раза больше Пи, более удобное в использовании как иррациональное. Тау показывает связь длины окружности и радиуса, что, по мнению некоторых, представляет более логичный метод исчисления. Впрочем, однозначно определить что-либо в данном вопросе невозможно, и у одного и у другого числа всегда будут сторонники, оба метода имеют право на жизнь, так что это просто интересный факт, а не повод думать, что пользоваться числом Пи не стоит.

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...