Механизмы индукции и регуляции иммунных реакций. Иммунология

1.1. ФОРМЫ ИММУНИТЕТА

Специфический иммунный ответ развивается в организме параллельно с развитием инфекции или после вакцинации и приводит к формированию ряда специфических эффекторных механизмов противоинфекционной защиты:

  1. Гуморальный иммунный ответ (В–лимфоцит);
  2. Клеточный иммунный ответ (Т–лимфоцит);
  3. Иммунологическая память (Т– и В–лимфоциты);
  4. Иммунологическая толерантность.

К этим механизмам относятся эффекторные молекулы (антитела) и эффекторные клетки (Т–лимфоциты и макрофаги) иммунной системы.

Гуморальные иммунные реакции

В гуморальных иммунных реакциях участвуют три клеточных типа: макрофаги (Аг–представляющие клетки), Т–хелперы и В–лимфоциты.

Аг–представляющие клетки фагоцитируют микроорганизм и перерабатывают его, расщепляя на фрагменты (процессинг Аг). Фрагменты Аг выставляются на поверхности Аг–представляющей клетки вместе с молекулой МНС. Комплекс «Аг–молекула МНС класса II» предъявляется Т–хелперу. Распознавание комплекса Т–хелпером стимулирует секрецию ИЛ–1 макрофагами.

Т–хелпер под действием ИЛ–1 синтезирует ИЛ–2 и рецепторы к ИЛ–2; последний стимулирует пролиферацию Т–хелперов, а также ЦТЛ. Таким образом, после взаимодействия с Аг–представляющей клеткой Т–хелпер приобретает способность отвечать на действие ИЛ–2 бурным размножением. Биологический смысл этого явления состоит в накоплении Т–хелперов, обеспечивающих образование в лимфоидных органах необходимого пула плазматических клеток, вырабатывающих АТ к данному Аг.

В–лимфоцит. Активация В–лимфоцита предполагает прямое взаимодействие Аг с молекулой Ig на поверхности В–клетки. В этом случае сам В–лимфоцит перерабатывает Аг и представляет его фрагмент в связи с молекулой МНС II на своей поверхности. Этот комплекс распознает Т–хелпер, отобранный при помощи того же Аг. Узнавание рецептором Т–хелпера комплекса Аг–молекула МНС класса II на поверхности В–лимфоцита приводит к секреции Т–хелпером ИЛ–2, ИЛ–4, ИЛ–5, ИЛ–6, под действием которых В–клетка размножается, образуя клон плазматических клеток (плазмоцитов). Плазмоциты синтезируют антитела. Часть зрелых В–лимфоцитов после антигензависимой дифференцировки циркулируют в организме в виде клеток памяти.

Антитела, специфически взаимодействуя с антигенными детерминантами (эпитопами) на поверхности микроорганизмов, образуют с ними иммунные комплексы, что ведет к активации мембраноатакующего комплекса системы комплемента и лизису микробных клеток. Кроме того, иммунные комплексы, включающие микроорганизмы и специфические антитела, быстрее и легче захватываются фагоцитирующими клетками организма при участии Fc–рецепторов. При этом ускоряется и облегчается внутриклеточная гибель и переваривание. Защитная роль антител в антитоксическом иммунитете определяется также их способностью нейтрализовать токсины. Секреторные иммуноглобулины класса А обеспечивают местный специфический иммунитет слизистых оболочек, препятствуя прикреплению и проникновению патогенных микроорганизмов.

Рис. 1. Гуморальный иммунный ответ.
В результате кооперации макрофагов, Т–хелперов и В–лимфоцитов и дальнейшей дифференцировки
В–лимфоцитов в плазматические клетки, последние продуцируют антитела, которые нейтрализуют антиген.

Клеточные иммунные реакции

В очаге иммунного воспаления Т–эффекторы ГЗТ, активированные при контакте с микробными антигенами, продуцируют лимфокины, индуцирующие микробоцидные механизмы фагоцитов. В результате усиливается внутриклеточная гибель захваченных фагоцитами возбудителей.

Другой механизм гибели зараженных клеток носит название антителозависимой цитотоксичности (АЗЦТ). Он заключается в распознавании микробных антигенов на мембране зараженной клетки–»мишени» антителами, адсорбированными на Fc–рецепторах NK–клеток или макрофагов. При этом цитотоксичность является результатом действия лизосомных ферментов и других продуктов секреции данных клеток.


Рис. 2. Клеточный иммунный ответ опосредован активированными
Т–хелперами макрофагами и другими фагоцитирующими клетками, а также цитотоксическими Т–лимфацитами.

Иммунологическая память

Иммунологическая память – способность организма отвечать на повторное введение антигена иммунной реакцией, характеризующейся большей силой и более быстрым развитием.

Клетки иммунологической памяти – долгоживущие Т– и В–лимфоциты, сохраняющие многие годы способность реагировать на повторное введение антигена, так как вырабатываются рецепторы к этому антигену. Иммунологическая память проявляется как ускоренный специфический ответ на повторное введение антигена.

Иммунологическая память к антигенным компонентам окружающей среды лежит в основе аллергических заболеваний, а к резус–антигену (возникает при резус–несовместимости беременности) – в основе гемолитической болезни новорожденных. Феномен иммунологической памяти используется в практике вакцинации людей.

Иммунологическая толерантность

Иммунологическая толерантность – явление, противоположное иммунному ответу и иммунологической памяти, проявляющееся в том, что на введение антигена вместо выработки иммунитета в организме развивается ареактивность, инертность, отсутствие ответа на антиген.

Иммунный ответ против собственных тканей организма в нормальных условиях не развивается, т.е. иммунная система толерантна к подавляющему большинству Аг тканей организма (аутоантигены). Искусственная толерантность к чужеродным Аг может быть вызвана иммунизацией по определенной схеме (например, толерантность «низкой дозы» – дробное введение Аг в возрастающих количествах или толерантность «высокой дозы» – однократное введение Аг в высокой дозе).

1.2. ВИДЫ ИММУНИТЕТА

Многообразие систем защиты организма позволяют человеку оставаться невосприимчивым к действию инфекционных агентов.

Видовой иммунитет (врожденный) – генетически закрепленная невосприимчивость присущая каждому виду. Например, человек никогда не заболевает чумой крупного рогатого скота. Крысы резистентны к дифтерийному токсину.

Приобретенный иммунитет формируется в течение жизни индивидуума и не передается по наследству; может быть естественным и искусственным, активным и пассивным.

Естественно приобретенный иммунитет (активный) развивается после перенесенного инфекционного заболевания, протекавшего в клинически выраженной форме, либо после скрытых контактов с микробными Аг (так называемая бытовая иммунизация). В зависимости от свойств возбудителя и состояния иммунной системы организма невосприимчивость может быть пожизненной (например, после кори), длительной (после брюшного тифа) или сравнительно кратковременной (после гриппа).

Инфекционный (нестерильный) иммунитет – особая форма приобретенной невосприимчивости; не является следствием перенесенной инфекции, обусловлен наличием инфекционного агента в организме. Невосприимчивость исчезает сразу после элиминации возбудителя из организма (например, туберкулез; вероятно, малярия).

Естественный пассивный иммунитет связан с переносом IgG от матери к плоду через плаценту (передача по вертикали) или с грудным молоком (SIgA) новорожденному. Это обеспечивает устойчивость новорожденного ко многим возбудителям в течение некоторого, обычно индивидуально варьирующего срока.

Искусственно приобретенный иммунитет. Состояние невосприимчивости развивается в результате вакцинации, серопрофилактики (введение сыворотки) и других манипуляций.

Активно приобретенный иммунитет развивается после иммунизации ослабленными или убитыми микроорганизмами либо их антигенами. В обоих случаях организм активно участвует в создании невосприимчивости, отвечая развитием иммунного ответа и формированием пула клеток памяти.

Пассивно приобретенный иммунитет достигается введением готовых АТ или, реже, сенсибилизированных лимфоцитов. В таких ситуациях иммунная система реагирует пассивно, не участвуя в своевременном развитии соответствующих иммунных реакций.

Иммунитет может формироваться против микроорганизмов, их токсинов, вирусов, антигенов опухолей. В этих случаях иммунитет называют антимикробным, антитоксическим, антивирусным, противоопухолевым соответственно. При трансплантации несовместимых тканей возникает трансплантационный иммунитет (реакция отторжения трансплантата).

Поступление в организм антигена через дыхательные пути, пищеварительный тракт и другие участки слизистых поверхностей и кожи нередко обуславливает развитие выраженной локальной иммунной реакции. В таких случаях речь идет о местном иммунитете.

1.3. РЕГУЛЯЦИЯ ИММУННОГО ОТВЕТА

Интенсивность и продолжительность иммунного ответа контролируется и регулируется при участии ряда механизмов обратной связи на генетическом, клеточном и организменном уровнях.

Генетический контроль иммунного ответа связан с наличием конкретных генов, контролирующих синтез и выход специфических рецепторов на поверхность иммунокомпетентных клеток, что непосредственно влияет на уровень представления и распознавания антигена.

Иммунная система представляет собой комплекс взаимодействующих клеток, связанных между собой внутренними регуляторными связями посредством цитокинов.

На уровне организма осуществляется взаимодействие нервной, эндокринной и иммунной систем, иммунный ответ контролируется и регулируется нейрогуморальными механизмами, среди которых ведущую роль играют кортикостероидные гормоны, подавляющие процессы пролиферации, дифференцировки и миграции лимфоидных клеток и ингибирующие биосинтез интерлейкинов.

Воспаление – сумма защитно–адаптивных реакций, развивающихся в тканях при их повреждении; впоследствии они могут полностью восстанавливать свою структуру и функции либо в них формируются стойкие дефекты. Хорошо известны классические признаки, характеризующие острое воспаление: покраснение, отек, боль, локальное повышение температуры и нарушение функций органа или ткани. Если интенсивность острой реакции оказывается недостаточной для элиминации возбудителя, то она меняет свои характеристики и принимает хроническое течение.

С позиции защиты от патогенов большинство системных реакций острого воспаления резко изменяет лимфо– и кровообращение в очаге. Вазодилатация и повышение проницаемости капилляров облегчает выход из просвета капилляров больших молекул (например, компонентов комплемента) и полиморфонуклеаров. Весьма важным фактором является снижение рН в воспаленных тканях, обусловленное преимущественно секрецией молочной кислоты фагоцитами. Снижение рН оказывает губительное действие на бактерии, повышает микробицидную активность низкомолекулярных органических кислот и снижает резистентность к действию антимикробных химиопрепаратов.

Любое инфекционное воспаление начинается с запуска комплементарного каскада и активации свертывающей системы, многие компоненты которых известны как медиаторы воспалительных реакций.

Основные условия реализа-ции иммунного распознавания, которое является ключевым процессом в им-мунном ответе :

  • АПК должна «сделать» оптимальное количество пептидов из чужерод-ного или собственного антигенного материала, а пептидсвязывающие бороздки ее HLA II — быть в состоянии связать эти пептиды. Этот этап назван селекцией антигенных детерминант.
  • Иммунная система конкретного человека должна иметь достаточный репертуар Т-лимфоцит ов, где содержался бы АГ-распознающий рецеп-тор, способный распознать данный чужеродный пептид. Если же такие Т-лимфоциты отсутствуют (есть «дыры» в репертуаре Т-лимфоцитов), создаются условия, при которых иммунная система неспособна распо-знавать некоторые антигены.
  • Предполагают, что с помощью пептидов и соответствующего цитокинового фона включаются механизмы запуска иммунного ответа с вклю-чением преимущественно Th 1 и Th 2.
  • Сила иммунного ответа зависит от характера пептида и молекул HLA, а также от степени соответствия между антигеном и максимально ком-плементарным антигенраспознающим рецептором, имеющимся в ре-цепторном репертуаре иммунной системы данного организма.

Следует обратить внимание на несколько важных условий, являющихся принципиальными при реализации механизма иммунного ответа (рис. 31). Иммунной системой антиген распознается в двух формах — в натуральном виде иммуноглобулиновыми рецепторами В-лимфоцитов и в виде иммуно-генного пептида антигенраспознающим рецептором Т-хелпер ов. Это необ-ходимо для осуществления корректного иммунного ответа. Известно, что именно факторы врожденной резистентности могут установить чужеродность патогена. Иммунокомпетентные клетки лишены этого свойства, что связано с особенностями формирования их рецепторов антигенного распознавания. Поэтому некоторые В-лимфоциты способны распознавать антигены, кото-рые отнюдь не являются чужеродными. Но самостоятельно они не могут развивать иммунный ответ, поскольку требуют стимулирующих влияний со стороны активированных Т-хелперов, распознавших соответствующий имму-ногенный пептид. Образование же пептида происходит за счет деятельности факторов врожденной резистентности (макрофагов, дендритных клеток), по-этому активация Т-хелперов происходит только при попадании чужеродного патогена.

Иммунная толерант-ность - это уникальное свойство иммунной системы распознавать собственные антигены, но не реагировать на них развитием эффекторных механизмов.

Механизмы, с помощью которых происходит непосредственное поврежде-ние патогена, называют эффекторными.

В результате иммунного ответа зачастую не формируются ка-кие-либо новые эффекторные механизмы. Факторы врожденной резистентности обладают мощным цитотоксическим потенциалом, который не реализуется в полном объеме на стадии первичной реакции из-за шаблонности распознавания патогена. Поэтому сложные и длительные (5-6 дней) процессы взаимодействия, пролиферации и дифференцировки иммунокомпетентных клеток, именуемые собственно иммунными реакциями, предназначены для наработки специфичес-кого механизма распознавания патогена для факторов врожденной резистентнос-ти и запоминания этого механизма на будущее. Вместе с тем именно иммунные механизмы берут на себя функцию руководства всеми факторами, задейство-ванными в борьбе с патогеном. Единственный компонент иммунной реакции, способный самостоятельно оказать повреждающий эффект, — цитотоксический Т-лимфоцит , но его эффекторный механизм мало отличается от таковою у естест-венных киллеров, относящихся к факторам врожденной резистентности.

Гуморальный иммунный ответ

Клеточный иммунный ответ

В случае внутри-клеточных патогенов и при возникновении опухолевых клеток реализуются так называемые клеточный иммунный ответ. Т-клетки, задействованные в этих реакциях, получили название Т-хелперов 1-го типа. Они продуцируют преимуще-ственно ИЛ-2, ФНО β, γ-ИФН.

Т-хелперы 1-го типа способствуют не синтезу антител , а формированию цитотоксических T-лимфоцитов (Т-киллеров). Поэтому иммунные реакции, инициируемые данными хелперами, и получили название клеточных. Сегодня склоняются к мысли, что активированные цитокинами Т-хелперов 1-го типа наивные CD8 + Т-клетки (будущие Т-киллеры) могут самостоятельно взаимо-действовать с АПК. При этом их антигенраспознающий рецептор взаимодей-ствует с комплексами пептид — HLA I, появляющимися на поверхности АПК (например, дендритных клеток), а молекула CD8 стабилизирует указанное вза-имодействие, выполняя роль корецептора. В данном случае необходимой яв-ляется экспрессия костимулирующих молекул. Их синтез АПК повышает под влиянием γ-ИФН Th I-го типа. В таком случае CD8 + Т-клетка активируется и начинает синтез ИЛ-2, который по аутокринному механизму приводит к уси-ленной пролиферации клетки — продуцента. В случае недостаточного синтеза собственного ИЛ-2 вступает в действие соответствующий цитокин Т-хелперов 1 -го типа. По окончании пролиферации происходит дифференцировка обра-зованного клона иммунных клеток. Так, из наивной CD8 + Т-клетки формиру-ется антигенспецифический компетентный Т-киллер, точнее, цитотоксический Т-лимфоцит. Он распознает соответствующие комплексы пептид — HLA I на поверхности скомпрометированных клеток (например, опухолевых), выполняя цитотоксические функции по отношению к ним. При этом взаимодействии уже не нужна экспрессия костимулирующих молекул. Материал с сайта

Сворачивание иммунного ответа происходит за счет деятельности макро-фагов благодаря их уникальному свойству совершать антигенную презентацию без отрыва от очага пребывания патогена. Поскольку макрофаги продолжают выполнять функцию фагоцитоза и цитотоксичности, именно эти клетки рас-полагают достоверной информацией о текущем состоянии патогена. В случае его элиминации прекращается антигенная презентация и экспрессия костимулирующих молекул, продукции макрофагальных провоспалительных цитоки-нов и стимуляция выработки адгезионных молекул. Перечисленные факторы удерживают активированные лимфоциты от спонтанного апоптоза. Поэтому в случае выключения макрофага из работы, что бывает при полной элими-нации патогена, происходит массовая гибель лимфоцитов, задействованных в осуществлении иммунной реакции. Выживают лишь клетки памяти — по-пуляция антигенспецифических лимфоцитов, отличающихся резистентнос-тью к спонтанному апоптозу. Именно эти клетки и обеспечат более быстрый и эффективный иммунный ответ при повторном поступлении антигена. При сворачивании иммунных реакций макрофаги синтезируют преимуществен-но трансформирующий фактор роста β. Этот цитокин подавляет экспрессию ФНО-α и стимулирует хемотаксис фибробластов в очаг воспаления На этой странице материал по темам:

Как известно, в ходе иммунной ответной реакции между чужеродным антигеном и реагирующим только с ним (специфическим) антителом возникает физико-химическая связь, которая способствует нейтрализации, расщеплению антигенов. Возникает вопрос: каким путем может организм образовывать специфическое антитело на каждый из сотен тысяч антигенов, происходящих из внешней среды. Недавно еще пытались объяснить иммунную ответную реакцию двумя противоречащими друг другу теориями: инструктивной и избирательной теорией.

I. Инструктивная теория : антиген, дав образец, вызывает образование специфического, реагирующего только с ним антитела (эта теория в такой форме может считаться опровергнутой.)

II. Избирательная теория : в результате проведенных генетических исследований и выяснения химической структуры иммуноглобулина избирательная теория может считаться доказанной. На поверхности антигенов имеются детерминантные группы (боковые цепи); организм обладает унаследованной способностью, заложенной в ДНК клеточного ядра, образовывать реагирующие с антигенами специфические антитела. Если организм встречается с определенным антигеном, в результате стимуляции обладающие реактивным белком лимфоциты селективно размножаются; лимфоцитарная популяция, способная к образованию такого специфического антитела, называется клоном.

Образовавшееся антитело, по имеющемуся опыту, только отчасти специфично, ибо близкие виды или белки с подобной функцией дают перекрестную реакцию, ив отдельных случаях даже системно далекие антигены могут давать реакцию (например, антиген Форсмана). Это обусловлено тем, что в ходе иммунизации в организм почти всегда вводится одна или несколько комплексных белковых молекул, обладающих многочисленными характерными группами (детерминантами). При исследовании кристаллических и синтетических белков было, однако, установлено, что одна молекула иммуноглобулина может реагировать не более чем с двумя детерминантами.

В отношении антигенового детерминанта, согласно исследованиям Левина, в результате генетического регулирования к иммунной ответной реакции относится закон: "все или ничего". Согласно нашим исследованиям, это же правило относится и к аллергенам: чувствительный к синтетическому лизину-вазопрессину ребенок не дает никакой аллергической реакции на окситоцин, хотя последний только одной циклической аминокислотой отличается от вазопрессина, помимо лизина, представляющего биологическую эффективность.

Иммунотолерантность . Это состояние противоположно иммунитету: организм на введение чужеродного антигена не дает иммунного ответа, что, как вытекает из вышесказанного, может возникать в результате генетической особенности: у данного лица отсутствует способный к образованию соответствующего антитела лимфоцитарный клон. Под влиянием очень большого количества (насыщающего) антигена или часто повторяемой малой дозы антигена уже существующая иммунная ответная реакция может прекратиться и может возникнуть толерантность по отношению к определенному антигену, т. е. организм временно или окончательно потеряет способность синтезировать или отдавать иммунные вещества по отношению к данному антигену. Толерантность является такой же специфической, как и иммунная ответная реакция: она относится только к определенному антигену.

Механизм приобретенной толерантности:

1. Перевес антигенов блокирует антитела, находящиеся на поверхности лимфоцитов В, и препятствует размножению соответствующих клеточных клонов. Торможение клеточных функций с помощью цитотоксических средств способствует возникновению толерантности.

2. Антитело при введении его в большой концентрации также может привести к возникновению толерантности, связывая антиген еще до того, как он попадает к специфическим реактивным лимфоцитам.

3. Согласно большинству новых исследований, в деле возникновения толерантности весьма важной является стимуляция ингибирующих (супрес-сорных) клеток Т.

Гибридизация . По данным новейших исследований, совместным выращиванием двух видов лимфоцитов, способных к различным иммунным ответам, в тканевой культуре можно получить моноклональные (образующие один вид антител) клетки. Это открывает новую возможность пассивной защиты, и в будущем можно будет получать человеческие антитела в больших количествах.

Химическая структура молекулы иммуноглобулина известна по исследованиям Эдельмана. Уже раньше было выяснено, что молекула иммуноглобулина путем расщепления дисульфидных мостов может быть расщеплена на две цепи Н (heavy - тяжелая) и две цепи L (light - легкая). Папаиновым перевариванием молекула может быть фрагментирована и иначе: тогда отщепляются две части, называемые Fab, и одна часть, называемая Fc.

Фрагмент Fab . Он образует место связывания специфического антигена. Фрагмент содержит полную цепь L и часть цепи Н. Наружной (аминотерминальной) частью или отрезком N двух цепей является вариабельная - V - область. Она содержит 111 аминокислот, специфическое связывание которых обуславливается меняющейся по отдельным антителам очередностью, стерео конфигурацией. Очередность аминокислот (секвентность) другой части независима от способности к реакции со специфическим антигеном: это отрезок С (константный). Последний индивидуально различен, и, таким образом, по качеству ИгГ описано много вариантов.

Молекулярный вес цепей L:20000 . С точки зрения антигенности имеется два вида легких цепей: каппа и ламбда (но в одной молекуле имеется только один вид).

Фрагмент Fc . Он представляет часть цепи Н. Сам по себе не связывается к антигену, а в случае физико-химической реакции между Fab и антигеном индуцирует цепь биологических реакций.

Классификация иммуноглобулинов возможна на основании различной антигенности цепей Н; в настоящее время различаются пять видов иммуноглобулинов. Цепь L в каждом случае может быть двоякой: каппа и ламбда.

Предположение об отсутствии единого механизма аллергии к молоку было высказано Vendel еще в 1948 г. Автор отмечал быструю и замедленную реакции на коровье молоко у больных с идиосинкразией к этому продукту. За последние годы наши знания об иммунных механизмах, лежащих в основе пищевой аллергии, расширились, но многие вопросы все еще остаются неясными. Трудности в известной мере связаны с тем обстоятельством, что циркулирующие антитела к белкам коровьего молока часто обнаруживают у совершенно здоровых людей и не выявляют у ряда больных с симптомами, явно укладывающимися в картину аллергии к молоку. По сути этот факт не должен вызывать удивления, поскольку антитела выполняют защитную функцию в организме, если количество их остается в пределах нормы, а иммунная система в целом хорошо сбалансирована. Согласно современным представлениям, в основе пищевой аллергии и других видов гиперчувствительности, как правило, лежит именно нарушение баланса иммунных механизмов. Имеющиеся данные свидетельствуют в пользу того, что большинство иммунных реакций, включая аллергические, не обусловлены каким-либо одним иммунным механизмом.

Наиболее принятая классификация механизмов аллергии разработана Gell и Coombs ; авторы выделяют четыре основных типа реакций:
Тип I. Повышенная чувствительность анафилактического или немедленного типа. Реакция этого типа возникает в результате взаимодействия между аллергеном или антигеном и специфическим к нему IgE антителом (или короткоживущим IgG) на поверхности тучных клеток с последующим высвобождением химических медиаторов, которые увеличивают местный кровоток, проницаемость сосудов и стимулируют приток различных клеток к месту реакции.

Тип II. Цитотоксическая, или цитолитическая реакция. При реакции этого типа антитела (обычно IgG или IgM классов) реагируют с антигенным компонентом клетки. Антиген может быть частью клеточной структуры; возможно также, что экзогенный антиген или гаптен адсорбированы на поверхности клетки. Связывание и активация комплемента, как правило, участвуют в цитолитическом повреждении ткани.

Тип III. Реакция типа феномена Артюса, или иммунных комплексов. Антиген (обычно при его избытке) реагирует со специфическим антителом (IgG или IgM), затем происходит связывание с комплементом и образование циркулирующих иммунных комплексов. Последние вызывают васкулиты, местную воспалительную реакцию и повреждение ткани. Высвобождаемые комплементом хемотаксические факторы стимулируют приток к месту реакции полиморфно-ядерных лейкоцитов, которые частично разрушаются и в свою очередь высвобождают протеолитические ферменты, приводящие к дальнейшему повреждению ткани.

Тип IV. Повышенная чувствительность замедленного типа, или реакция клеточного иммунитета. Сенсибилизированные Т-лимфоциты мигрируют к месту скопления антигенов и реагируют с клеткой-мишенью или микроорганизмом, в котором находится антиген. Одновременно Т-клетки высвобождают разнообразные реактивные вещества, называемые лимфокинами, которые способствуют развитию иммунных реакций и нередко участвуют в повреждении ткани.

Защитные функции, т. е. поддержание гомеостаза при антигенных воздействиях, иммунная система осуществляет с помощью комплекса сложных взаимосвязанных реакций, носящих как специфический, т.е. присущий только иммунной системе, так и неспецифический (общефизиологический) характер. Поэтому все формы иммунного реагирования и факторы защиты организма подразделяют на специфические и неспецифические.

К неспецифическим факторам резистентности относят следующие:

§ механические (кожа и слизистые оболочки);

§ физико-химические (ферменты, реакция среды и др.);

§ ммунобиологическую защиту, осуществляемую нормальными неиммунными клетками (фагоциты, естественные киллеры) и гуморальными компонентами (комплемент, интерферон, некоторые белки крови).

К специфическим факторам защиты относятся следующие формы реагирования иммунной системы:

§ антителообразование;

§ иммунный фагоцитоз и киллерная функция иммунных макрофагов и лимфоцитов;

§ гиперчувствительность немедленного типа (ГНТ);

§ гиперчувствительность замедленного типа (ГЗТ);

§ иммунологическая память;

§ иммунологическая толерантность.

Иногда к формам иммунологического реагирования относят идиотип – антиидиотипическое взаимодействие.

Неспецифические и специфические факторы защиты нельзя рассматривать изолированно, так как они функционируют во взаимодействии, составляя единую целостную систему защиты организма от антигенов (например, возбудителей инфекционных болезней). Однако они могут включаться в процесс защиты не одновременно и не все сразу. В зависимости от характера антигенного воздействия ведущими могут быть или одна, или несколько форм реагирования, некоторые при этом могут не проявляться. В этом заключается многообразие, экономность и эффективность действия иммунной системы. Например, для обезвреживания дифтерийного, столбнячного шиш другого токсина достаточно такой реакции иммунитета, как образование антител, поскольку вырабатываемые антитоксины нейтрализуют токсин; при туберкулезе основное значение имеет киллерная функция Т-лимфоцитов, в противовирусной I защите ведущую роль играет противовирусный белок, вырабатываемый клетками иммунной системы, - - интерферон; в противоопухолевом иммунитете – функция естественных киллеров и т. д.



Факторы неспецифической защиты организма

Механические факторы. Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия (например, вирусы). Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы. Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент, открытый в 1909 г. П. Л. Лащенко и выделенный в 1922 г. А. Флемингом, получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидкостях и тканях организма (кровь, слюна, слезы, молоко, кишечная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лечения воспалительных заболеваний.

Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов неспецифической резистентности, направленных на устранение чужеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма. К ним относятся белки системы комплемента, интерферон, трансферрин, р-лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. р-Лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конкурирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться. Белок пропердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (з-липопротеины), инактивируют многие вирусы в результате неспецифической блокады их поверхности.Отдельные гуморальные факторы (некоторые компоненты комплемента, фибронектин и др.) вместе с антителами взаимодействуют с поверхностью микроорганизмов, способствуя их фагоцитозу, играя роль опсонинов.

Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотокси-ческой активностью, называемые естественными киллерами, или МК-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, пораженных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор. В поддержании резистентности организма имеет большое значение и нормальная микрофлора организма (см. раздел 4.5).

Фагоцитоз

Фагоцитоз (от греч. phago – пожираю и cytos – клетка) -процесс поглощения и переваривания антигенных веществ, в том числе микроорганизмов, клетками мезодермального происхождения – фагоцитами. И. И. Мечников разделил фагоциты на макрофаги и микрофаги. В настоящее время макро- и микрофаги объединены в единую систему макрофагов (СМФ). К этой системе относят тканевые макрофаги – эпителиальные клетки, звездчатые ретикулоэндотелиоциты (клетки Купфера), альвеолярные и перитонеальные макрофаги, находящиеся в альвеолах и полости брюшины, белые отростчатые эпидермоциты кожи (клетки Лангерганса) и др.

Функции макрофагов чрезвычайно разнообразны. Они первые реагируют на чужеродное вещество, являясь специализированными клетками, поглощающими и уничтожающими в организме чужеродные субстанции (отмирающие клетки, раковые клетки, бактерии, вирусы и другие микроорганизмы, антигены, не-метаболизируемые неорганические вещества). Кроме того, макрофаги вырабатывают многие биологически активные вещества – ферменты (в том числе лизоцим, пероксидазу, эстеразу), белки комплемента, иммуномодуляторы типа интерлейкинов. Наличие на поверхности макрофагов рецепторов к иммуноглобулинам (антителам) и комплементу, а также система медиаторов обеспечивают их взаимодействие с Т- и В-лимфоцитами. При этом макрофаги активируют защитные функции Т-лимфоцитов. Благодаря наличию рецепторов к комплементу и иммуноглобулинам, а также антигенов системы гистосовместимости (HLA) макрофаги принимают участие в связывании и распознавании антигенов.

Механизм и стадии фагоцитоза. Одной из основных функций макрофагов является фагоцитоз, который представляет собой эн-доцитоз, осуществляемый в несколько стадий.

Первая стадия – адсорбция частиц на поверхности макрофага за счет электростатических вандерваальсовых сил и химического сродства частиц к рецепторам фагоцита. Вторая стадия – инвагинация клеточной мембраны, захват частицы и погружение ее в протоплазму. Третья стадия – образование фагосомы, т. е. вакуоли (пузырька) в протоплазме вокруг поглощенной частицы. Четвертая стадия – слияние фагосомы с лизосомой фагоцита, содержащей десятки ферментов, и образование фаголизосомы. В фа-голизосоме происходит переваривание (деструкция) захваченной частицы ферментами. При поглощении частицы, принадлежащей организму (например, погибшая клетка или ее части, собственные белки и другие вещества), происходит расщепление ее ферментами фаголизосомы до неантигенных веществ (аминокислоты, жирные кислоты, нуклеотиды, моносахара). Если поглощается чужеродная частица, ферменты фаголизосомы не в состоянии расщепить вещество до неантигенных компонентов. В таких случаях фаголизосома с оставшейся и сохранившей чужеродность частью антигена передается макрофагом Т- и В-лимфоцитам, т. е. включается специфическое звено иммунитета. Эта передача неразрушенной части антигена (детерминанты) Т-лимфоциту осуществляется путем связывания детерминанты распознающим антигеном комплекса гистосовместимости, к которому на Т-лим-фоцитах имеются специфические рецепторы. Описанный механизм лежит в основе распознавания «своего» и «чужого» на уровне макрофага и явления фагоцитоза.

Роль фагоцитоза. Фагоцитоз является важнейшей защитной реакцией. Фагоциты захватывают бактерии, грибы, вирусы и инак-тивируют их посредством набора ферментов и способности секретировать Н 2 О 2 и другие перекисные соединения, образующие активный кислород (завершенный фагоцитоз). Однако в некоторых случаях захваченные фагоцитом микроорганизмы выживают и размножаются в нем (например, гонококки, туберкулезная палочка, возбудитель ВИЧ-инфекции и др.). В таких случаях фагоцитоз называют незавершенным.Фагоцитоз усиливается антителами-опсонинами, так как связанный ими антиген легче адсорбируется на поверхности фагоцита вследствие наличия у последнего рецепторов к этим антителам. Такое усиление фагоцитоза антителами названо опсонизацией, т.е. подготовкой микроорганизмов к захвату фагоцитами. Фагоцитоз опсонизированных антигенов называют иммунным. Для характеристики активности фагоцитоза введен фагоцитарный показатель. Для определения его подсчитывают под микроскопом число бактерий, поглощенных одним фагоцитом. Пользуются также опсонофагоцитарным индексом, представляющим отношение фагоцитарных показателей, полученных с иммунной и неиммунной сывороткой. Фагоцитарный показатель и опсонофагоцитарный индекс используют в клинической иммунологии для оценки состояния иммунитета и иммунного статуса. Фагоцитоз играет большую роль в противобактериальной, противогрибковой и противовирусной защите, поддержании резистентности организма к чужеродным веществам.

Комплемент

Природа комплемента. Комплемент представляет собой сложный комплекс белков сыворотки крови, реагирующих между собой в определенной последовательности и обеспечивающих участие антигенов и антител в клеточных и гуморальных реакциях иммунитета. Открыт комплемент французским ученым Ж. Борде, назвавшим его «алексином». Современное название комплементу дал П. Эрлих.

Комплемент состоит из 20 различающихся по физико-химическим свойствам белков сыворотки крови, его обозначают символом «С», а девять основных компонентов комплемента – цифрами: С1, С2, ... С9. Каждый компонент имеет субъединицы, которые образуются при расщеплении; обозначаются они буквами: Clq, СЗа, СЗЬ и т.д. Белки комплемента являются глобулинами или гликопротеинами с молекулярной массой от 80 (С9) до 900 тыс. (С1). Вырабатываются макрофагами, нейтрофилами и составляют 5.10 % всех белков сыворотки крови.

Механизм действия и функции. Комплемент выполняет разнообразные функции и является одним из главных компонентов иммунной системы. В организме комплемент находится в неактивном состоянии и активируется обычно в момент образования комплекса антиген – антитело. После активации его действие носит каскадный характер и представляет серию протео-литических реакций, направленных на усиление иммунных и клеточных реакций и активацию действия антител по устранению антигенов. Существует два пути активации комплемента: классический и альтернативный. При классическом способе активации происходит присоединение к комплексу антиген – антитело (АГ + AT) вначале компонента С1 комплемента (его трех субъединиц Clq, Clr, Cls), затем к образовавшемуся комплексу АГ + AT + СІ присоединяются последовательно «ранние» компоненты комплемента С4, С2, СЗ. Эти «ранние» компоненты активируют с помощью ферментов компонент С5, причем реакция протекает уже без участия комплекса АГ + AT. Компонент С5 прикрепляется к мембране клетки, и на нем образуется литический комплекс из «поздних» 1 компонентов комплемента С5Ь, С6, С7, С8, С9. Этот литический комплекс называется мембраноатакующим, так как он осуществляет лизис клетки.

Альтернативный путь активации комплемента происходит без участия антител и осуществляется до выработки антител в организме. Альтернативный путь также заканчивается активацией компонента С5 и образованием мембраноатакующего комплекса, но без участия компонентов С1, С2, С4. Весь процесс начинается с активации компонента СЗ, которая может происходить непосредственно в результате прямого действия антигена (например, полисахарида микробной клетки). Активированный компонент СЗ взаимодействует с факторами В и D (ферментами) системы комплемента и белком пропердином (Р). Образовавшийся комплекс включает компонент С5, на котором и формируется мембраноатакующий комплекс, как и при классическом пути активации комплемента.Таким образом, классический и альтернативный пути активации комплемента завершаются образованием мембраноатакующего литического комплекса. Механизм действия этого комплекса на клетку до конца не выяснен. Однако известно, что этот комплекс внедряется в мембрану, образует как бы воронку с нарушением целостности мембраны. Это приводит к выходу из клетки низкомолекулярных компонентов цитоплазмы, а также белков, поступлению в клетку воды, что в конечном итоге приводит к гибели клетки.

Как уже указывалось, процесс активации комплемента представляет каскадную ферментативную реакцию, в которой участвуют протеазы и эстеразы, в результате чего образуются продукты протеолиза компонентов С4, С2, СЗ, С5, фрагменты C4b, C2b, C3b, C5b, а также фрагменты СЗа и С5а. Если фрагменты C4b, C2b, C3b, C5b участвуют в активации системы комплемента, то фрагменты СЗа и С5а обладают особой биологической активностью. Они высвобождают гистамин из тучных клеток, вызывают сокращение гладкой мускулатуры, т. е. вызывают анафилактическую реакцию, поэтому они названы анафилотоксинами.

Система комплемента обеспечивает:

§ цитолитическое и цитотоксическое действие антител на клетки-мишени благодаря образованию мембраноатакующего комплекса;

§ активацию фагоцитоза в результате связывания с иммунными комплексами и адсорбции их рецепторами макрофагов;

§ участие в индукции иммунного ответа вследствие обеспечения процесса доставки антигена макрофагами;

§ участие в реакции анафилаксии, а также в развитии воспаления вследствие того, что некоторые фрагменты комплемента обладают хемотаксической активностью. Следовательно, комплемент обладает многосторонней иммунологической активностью, участвует в освобождении организма от микроорганизмов и других антигенов, в уничтожении опухолевых клеток, отторжении трансплантатов, аллергических повреждениях тканей, индукции иммунного ответа.

Интерферон

Природа интерферона. Интерферон представляет собой белок, обладающий противовирусным, противоопухолевым и иммуно-модулирующим свойствами, вырабатываемый многими клетками в ответ на внедрение вируса или сложных биополимеров. Интерферон гетерогенен по своему составу, его молекулярная масса колеблется от 15 до 70 кД. Открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении явления интерференции вирусов.Семейство интерферонов включает более 20 белков, различающихся по физико-химическим свойствам. Все они объединены в три группы по источнику происхождения: а, р, у. а-Интерферон вырабатывается В-лимфоцитами; его получают из лейкоцитов крови, поэтому называют лейкоцитарным. р-Интерфе-рон получают при заражении вирусами культуры клеток фиб-робластов человека; его называют фибробластным. у-Интерферон получают из иммунных Т-лимфоцитов, сенсибилизированных антигенами, поэтому его называют иммунным. Интерфероны обладают видовой специфичностью, т.е. интерферон человека менее эффективен для животных и наоборот.

Механизм действия. Противовирусное, антипролиферативное и иммуномодулирующее действие интерферонов не связано с непосредственным влиянием на вирусы или клетки, т.е. интерферон не действует вне клетки. Абсорбируясь на поверхности клетки или проникая внутрь клетки, он через геном клетки влияет на процессы репродукции вируса или пролиферацию клетки. Поэтому действие интерферона в основном профилактическое, но его используют и в лечебных целях. Значение интерферонов. Интерферон играет большую роль в поддержании резистентности к вирусам, поэтому его применяют для профилактики и лечения многих вирусных инфекций (грипп, аденовирусы, герпес, вирусный гепатит и др.). Антипролиферативное действие, особенно у-интерферона, используют для лечения злокачественных опухолей, а иммуномодулирующее свойство – для коррекции работы иммунной системы с целью ее нормализации при различных иммунодефицитах.Разработан и производится ряд препаратов а-, р- и у-интерфе-ронов. Современные препараты получают методами биотехнологии, основанными на принципах генетической инженерии (см. главу 6).

Антигены

Антигены – это любые генетически чужеродные для данного организма вещества (обычно биополимеры), которые, попав во внутреннюю среду организма или образуясь в организме, вызывают ответную специфическую иммунологическую реакцию: синтез антител, появление сенсибилизированных лимфоцитов или возникновение толерантности к этому веществу, гиперчувствительности немедленного и замедленного типов иммунологической памяти.

Антитела, вырабатываемые в ответ на введение антигена, специфически взаимодействуют с этим антигеном in vitro и in vivo, образуя комплекс антиген – антитело.

Антигены, вызывающие полноценный иммунный ответ, называются полными антигенами. Это органические вещества микробного, растительного и животного происхождения. Химические элементы, простые и сложные неорганические соединения антигенностью не обладают. Антигенами могут быть как вредные, так и безвредные для организма вещества. Антигенами являются также бактерии, грибы, простейшие, вирусы, клетки и ткани животных, попавшие во внутреннюю среду макроорганизма, а также клеточные стенки, цитоплазматические мембраны, рибосомы, митохондрии, микробные токсины, экстракты гельминтов, яды многих змей и пчел, природные белковые вещества, некоторые полисахаридные вещества микробного происхождения, растительные токсины и т. д. Антигенность определяется структурными особенностями биополимеров, являющихся генетически чужеродными для организма. Большинство из них содержат несколько видов антигенов. Количество антигенов в природе увеличивается в результате появления антигенных свойств у многих неантигенных субстанций при соединении их с другими веществами. Некоторые вещества самостоятельно не вызывают иммунного ответа, но приобретают эту способность при конъюгации с высокомолекулярными белковыми носителями или в смеси с ними. Такие вещества называют неполными антигенами, или гаптенами. Гаптенами могут быть химические вещества с малой молекулярной массой или более сложные химические вещества, не обладающие свойствами полного антигена: некоторые бактериальные полисахариды, полипептид туберкулезной палочки (РРД), ДНК, РНК, липиды, пептиды. Гаптен является частью полного или конъюгированного антигена. Образующиеся к конъюгату белка с гаптеном антитела могут также реагировать и со свободным гаптеном. Гаптены иммунного ответа не вызывают, но они вступают в реакцию с сыворотками, содержащими специфические к ним антитела.

Антигены обладают специфичностью, которая связана с какой-либо определенной химической группой в составе молекулы, называемой детерминантой, или эпитопом. Детерминанты антигена – это те его части, которые распознаются антителами и иммунокомпетентными клетками. Полные антигены могут иметь в своем составе две и более однозначные детерминантные группировки, поэтому они являются двухвалентными или поливалентными. Неполные антигены (гаптены) имеют лишь одну детерминантную группировку, т.е. являются одновалещными.

Наиболее выраженными антигенными свойствами обладают белки как биополимеры с выраженной генетической чужеродностью. Чем дальше друг от друга в филогенетическом развитии отстоят животные, тем большей антигенностью будут обладать их белки по отношению друг к другу. Это свойство белков используется для выявления филогенетического родства животных различных видов, а также в судебно-медицинской экспертизе (для определения видовой принадлежности пятен крови) и пищевой промышленности (для выявления фальсификации мясных продуктов).

Большое значение имеет молекулярная масса антигена. Антигенностью обладают биополимеры молекулярной массой не менее 5-10 кД. Из этого правила существуют исключения: нуклеиновые кислоты обладают большой молекулярной массой, но по сравнению с белком их антигенные свойства гораздо менее выражены. Сывороточный альбумин и гемоглобин обладают одинаковой молекулярной массой (~ 70 000), но альбумин является более сильным антигеном, чем гемоглобин. Это обусловлено различием в валентности указанных белков, т.е. числе содержащихся в них детерминантных групп.

Антигенность связывают с жесткой поверхностной структурой детерминант, расположением аминокислот, составляющих полипептидные цепи, особенно их концевые части. Например, желатин многие годы не считался антигеном из-за отсутствия жестких структур на поверхности молекулы, хотя представляет собой белок с большой молекулярной массой. Молекула желатина может "приобрести свойства антигена, если ввести в ее структуру тирозин или другое химическое вещество, придающее жесткость поверхностным структурам. Антигенная детерминанта полисахаридов состоит из нескольких гексозных остатков.Антигенные свойства желатина, гемоглобина и других слабых антигенов можно усилить, адсорбируя их на различных носителях (каолин, активированный уголь, химические полимеры, гидроокись алюминия и др.). Эти вещества повышают иммуноген-ность антигена. Они называются адъювантами (см. главу 9). На иммунный ответ влияет количество поступающего антигена: чем его больше, тем более выражен иммунный ответ. Однако при слишком большой дозе антигена может наступить иммунологическая толерантность, т.е. отсутствие ответа организма на антигенное раздражение. Это явление можно объяснить стимуляцией антигеном субпопуляции супрессорных Т-лимфоцитов.

Важным условием антигенности является растворимость антигена. Кератин – высокомолекулярный белок, но он не может быть представлен в виде коллоидного раствора и не является антигеном. Гаптены из-за небольшой молекулярной массы не фиксируются иммунокомпетентными клетками макроорганизма и не могут вызвать ответную иммунологическую реакцию. Если молекулу гаптена искусственно укрупнить, конъюгировав ее с крупной белковой молекулой, получится полноценный антиген, специфичность которого будет определять гаптен. Белок-носитель при этом может терять свою видовую специфичность, так как детерминанты гаптена расположены на его поверхности и перекрывают его собственные детерминанты. Полугаптены – неорганические радикалы (йод, бром, нит-рофуппа, азот и т. д.), присоединившиеся к белковой молекуле, могут менять иммунологическую специфичность белка.

Такие йодированные или бромированные белки вызывают образование антител, специфичных к йоду и брому соответственно, т. е. к тем детерминантам, которые располагаются на поверхности полного антигена.

Проантигены – гаптены, которые могут соединяться с собственными белками организма и сенсибилизировать его как аутоантигены. Например, продукты расщепления пенициллина в соединении с белками организма могут быть антигенами. Гетероантигены – общие антигены, встречающиеся у разных видов животных. Впервые этот феномен был отмечен в опытах Дж. Форсмана (1911), который иммунизировал кролика суспензией органов морской свинки. Полученная от кролика сыворотка содержала антитела, вступавшие во взаимодействие не только с белками морской свинки, но и с эритроцитами барана. Оказалось, что полисахариды морской свинки в антигенном отношении одинаковы с полисахаридами эритроцитов барана.

Гетероантигены обнаружены у человека и некоторых видов бактерий. Например, возбудитель чумы и эритроциты человека с 0 группой крови имеют общие антигены. В результате иммунокомпетентные клетки этих людей не реагируют на возбудителя чумы как на чужеродный антиген и не развивают полноценной иммунологической реакции, что нередко приводит к летальному исходу.

Аллоантигены (изоантигены) – различные антигены внутри одного вида. В настоящее время в эритроцитах человека обнаружено более 70 антигенов, которые дают около 200 000 сочетаний. Для практического здравоохранения решающее значение имеют группы крови в системе АВО и резус-антиген. Кроме эритроцитарных антигенов, у человека существуют и другие аллоантигены, например антигены главного комплекса гистосовместимости – МНС (Major Histocompatibility Complex). В 6-й паре хромосом человека располагаются трансплантационные антигены HLA (Human Leucocyte Antigens), детерминирующие тканевую совместимость при пересадке тканей и органов. Тканям человека присуща абсолютная индивидуальность, и подобрать донора и реципиента с одинаковым набором тканевых антигенов практически невозможно (исключение – однояйцевые близнецы). Клетки злокачественных опухолей также содержат антигены, отличающиеся от антигенов нормальных клеток, что используется для иммунодиагностики опухолей (см. главу 9).

Антигены бактерий, вирусов, грибов, простейших являются полными антигенами. В соответствии с химическим составом, содержанием и качеством белков, липидов, их комплексов анти-генность у разных видов микроорганизмов различна. Поэтому каждый вид представляет собой антигенную мозаику (см. главу 2). Антигены микроорганизмов используют для получения вакцин и диагностических препаратов, а также идентификации и индикации микроорганизмов.

В процессе эволюции антигенная структура некоторых микроорганизмов может меняться. Особенно большой изменчивостью антигенной структуры обладают вирусы (гриппа, ВИЧ). Таким образом, антигены, как генетически чужеродные вещества, осуществляют запуск иммунной системы, приведение ее в функционально активное состояние, выражающееся в проявлении тех или иных иммунологических реакций, направленных на устранение неблагоприятного воздействия антигена.

Антителообразование

Природа антител. В ответ на введение антигена иммунная система вырабатывает антитела – белки, способные специфически соединяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся антитела к γ-глобулинам, т. е. наименее подвижной в электрическом поле фракции белков сыворотки крови. В организме γ-гло-булины вырабатываются особыми клетками – плазмоцитами. Количество γ-глобулина в сыворотке крови составляет примерно 30% от всех белков крови (альбуминов, а-, b-глобулинов и др.). В соответствии с Международной классификацией γ-глобулины, несущие функции антител, получили название иммуноглобулинов и обозначаются символом Ig. Следовательно, антитела – это иммуноглобулины, вырабатываемые в ответ на введение антигена и способные специфически взаимодействовать с этим же антигеном.

Функции антител. Первичная функция антител состоит во взаимодействии их активных центров с комплементарными им детерминантами антигенов. Вторичная функция антител состоит в их способности:

§ связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защиты от антигена;

§ участвовать в распознавании «чужого» антигена;

§ обеспечивать кооперацию иммунокомпетентных клеток (макрофагов, Т- и В-лимфоцитов);

§ участвовать в различных формах иммунного ответа (фагоцитоз, киллерная функция, ГНТ, ГЗТ, иммунологическая толерантность, иммунологическая память).

Применение антител в медицине. Вследствие высокой специфичности и большой роли в защитных иммунных реакциях антитела используют для диагностики инфекционных и неинфекционных заболеваний, определения иммунного статуса организма, профилактики и терапии ряда инфекционных и неинфекционных болезней. Для этого существуют соответствующие иммунобиологические препараты, созданные на основе антител и имеющие целевое назначение (см. главу 10).

Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из протеина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Молекулярная масса иммуноглобулинов находится в пределах 150.900 кД. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80% иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кислотам, щелочам, нагреванию до 60ºС. Выделить иммуноглобулины из сыворотки крови можно физическими и химическими методами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммунобиологических препаратов. Иммуноглобулины по структуре, антигенным и иммунобиологическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют подклассы. Например, IgG имеет четыре подкласса (IgG, IgG2, IgGj, IgG4). Все классы и подклассы различаются по аминокислотной последовательности. Иммуноглобулины человека и животных сходны по строению.

Р. Портер и Д. Эдельман установили строение молекулы иммуноглобулинов. По их данным, молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н (от англ, heavy – тяжелый) и двух одинаковых легких цепей – L (от англ, light – легкий), соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, А, Е, D, различают пять типов тяжелых цепей: ц (мю), у (гамма), а (альфа), е (эпсилон) и 5 (дельта), имеющих молекулярную массу в пределах 50.70 кД (содержат 420-700 аминокислотных остатков) и различающихся по антигенносте. Легкие цепи всех пяти классов являются общими и бывают двух типов: к (каппа) и х (ламбда); имеют молекулярную массу 23 кД (214.219 аминокислотных остатков). L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичными, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (к или А.). Как в Н-, так и в L-цепях имеется вариабельная – V (от англ-various – разный) область, в которой последовательность аминокислот непостоянна, и константная – С (от англ, constant – постоянный) область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.При обработке γ-глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два некристаллизующихся, содержащих детерми-нантные группы к антигену и названных Fab-фрагментами І и II (от англ, fragment antigen binding – фрагменты, связывающие антиген) и один кристаллизующий Fc-фрагмент (от англ, fragment crystal!izable). FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соединенными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру. Как Н-цепи, так и L-цепи имеют отдельные, линейно связанные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи – по 2. Активные центры, или детерминанты, которые формируются в V-областях, занимают примерно 2% поверхности молекулы иммуноглобулина. В каждой молекуле имеются две детерминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может связать две молекулы антигена. Поэтому антитела являются двухвалентными.

Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молекул. Так, IgM представляет собой пентамер, т.е. пять молекул IgG, соединенных полипептидной цепью, обозначаемой буквой J (от англ, joining chain – строение молекулы). IgA бывает обычным, т. е. мономерным, а также ди- и тримерным. Различают IgA сывороточный и секреторный. В последнем молекула соединена с секреторным компонентом (SC), выделяемым эпителиальными клетками, что защищает IgA от разрушения ферментами. IgE обладает высокой цитофильностью, т.е. способностью присоединяться к тучным клеткам и базофилам, в результате чего клетки выделяют гистамин и гистаминоподобные вещества, вызывающие ГНТ. IgD склонен к агрегации, имеет дополнительные дисульфидные связи.

В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные – несколько позже. Основную массу сывороточных иммуноглобулинов (70.80 %) составляет IgG; на долю IgA приходится 10-15 %, IgM – 5.10 %, IgE – 0,002 % и IgD – около 0,2 %. Содержание иммуноглобулинов меняется с возрастом. При некоторых патологических расстройствах наблюдаются отклонения в уровне их содержания в крови. Например, концентрация IgG возрастает при инфекционных болезнях, аутоиммунных расстройствах, снижается при некоторых опухолях, агаммаглобулинемии. Содержание IgM увеличивается при многих инфекционных болезнях, снижается при некоторых имму-нодефицитных состояниях.

Синтез антител. Как уже было сказано, иммуноглобулины синтезируются плазмоцитами, которые образуются в результате дифференцировки полипотентной стволовой клетки. Плазмоцит синтезирует как неиммунный, так и иммунный γ-глобулин. Информацию о специфичности синтезируемого иммуноглобулина плаз-моциты получают от В-лимфоцитов; L- и Н-цепи синтезируются на полирибосомах плазмоцита отдельно и соединяются в единую молекулу перед выделением из клетки. Сборка молекулы иммуноглобулина из Н- и L-цепей происходит очень быстро, в течение 1 мин. Выделение иммуноглобулина из плазмоцита осуществляется путем экзоцитоза или клазматоза, т. е. отпочковывания части цитоплазмы с иммуноглобулином. Каждый плазмоцит синтезирует до 2000 молекул в секунду. Синтезированные антитела поступают в лимфу, кровь, тканевую жидкость.

Генетика антител. Иммуноглобулин, как и всякий белок, обладает антигенностью. В молекуле иммуноглобулина различают три типа антигенных детерминант: изотипические, аллотипические и идиотипические. Изотипические детерминанты (изотипы) являются видовыми, т. е. они идентичны для всех особей данного вида (например, человека, кролика, собаки). Аллотипические детерминанты (аллотипы) у одних особей данного вида имеются, у других – отсутствуют, т. е. они являются индивидуальными. Наконец, идиотипические детерминанты (идиоти-пы) присущи только молекулам антител, обладающих определенной специфичностью. Эти детерминантные различия обусловлены числом и порядком чередования аминокислот в активном центре молекулы иммуноглобулина.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...