Микроэлементы что к ним относится. Макроэлементы — это что? Какими бывают макроэлементы и микроэлементы? Что такое микроэлементы

Микроэлементы являются активным веществом микроудобрений.

Показать все


Микроэлементы распространены в земной коре в концентрациях, не превышающих 0,1 %, а в живом веществе они обнаруживаются в количестве 10 -3 -10 -12 %. К группе микроэлементов относят металлы, неметаллы, галогены. Единственная их общая черта - низкое содержание в живых тканях.

Микроэлементы принимают самое активное участие во многих жизненных процессах, происходящих в растениях на молекулярном уровне. Путем воздействия на ферментную систему либо в непосредственной связи с биополимерами растений они стимулируют или ингибируют протекание физиологических процессов в тканях.

Для корректировки содержания микроэлементов в почве практикуют некорневые подкормки в течение вегетации, предпосевную обработку семян и посадочного материала, а также внесение в почву необходимых веществ в виде удобрений.

Физические и химические свойства

Микроэлементы различны по своим физическим и химическим свойствам. Среди них встречаются металлы ( , ), неметаллы (), галогены ().

Классификация микроэлементов

Химические элементы подразделяются на необходимые для растений и полезные им.

Необходимые

питательные элементы отвечают следующим требованиям:
  • без элемента не может завершиться жизненный цикл растения;
  • физиологические функции, выполняемые с участием конкретного элемента, не осуществляются при его замене на другой элемент;
  • элемент обязательно вовлекается в метаболизм растения.

Однако существует ряд условностей в использовании данного термина. Дело в том, что сложности с его применением возникают уже при сравнении необходимости того или иного элемента для жизни высших и низших растений и, тем более, животных и человека. Так, например, не доказана необходимость бора для некоторых грибов, спорна необходимость наличия кобальта для осуществления физиологических функций целого ряда растений. К бесспорно необходимым элементам относят , хлор, никель.

Полезные

- это питательные элементы, обладающие способностью стимулировать рост и развитие растений, но не в полной мере соответствующие трем требованиям, приведенным выше. К этой группе относятся и те элементы, которые необходимы только в определенных условиях и только для определенных видов растений. В настоящее время из микроэлементов полезными для растений считаются , селен, кремний, алюминий, и другие.

В настоящее время жизненно необходимыми для растений считаются только около десяти микроэлементов, еще несколько - необходимыми узкому кругу видов. Для остальных элементов известно, что они могут оказывать стимулирующее действие на растения, но их функции не установлены.

Некоторые физические и химические свойства микроэлементов , согласно данным:

Микроэлемент

Атомный номер

Атомная масса

Физическое состояние при нормальны условиях

10,81

неметалл

3700

2075

порошок черного цвета

50,94

металл

3400

1900

металл серебристого цвета

126,90

галоген

113,6

185,5

черно-фиолетовые кристаллы

54,94

металл

2095

1244

металл серебристого белого цвета

59,93

VIII

металл

2960

1494

твердый, тягучий, блестящий металл

63,54

металл

2600

1083

металл красного, в изломе розового цвета

65,39

металл

419,5

голубовато-серебристый металл

95,94

металл

4800

2620

светло-серый металл

Микроэлементы содержатся в небольших количествах практически повсеместно: в горных породах, почве, растениях и, естественно, в организме человека и животных.

Дерново-

подзолистая

1,5-6 ,6

0,08-0,38

0,1-47,9

0,05-5,0

20-67

0,12-20,0

40-7200

50,0-150

1,0-4,0

0,04-0 ,97

0,45-14,0

0,12-3,0

10-62

н.д.

0,5-4,4

н.д.

Чернозем

4-12

0,38-1,58

7-18

4,5-10,0

24-90

0,10-0,25

200-5600

1,0-75

0,7-8,6

0,02-0,33

2,6-13,0

1,10-2,2

37-125

н.д.

2,0-9,8

н.д.

Серозем

8,8-160,3

0,23-0,62

5-20

2,5-10,0

26-63

0,09-1,12

310-3800

1,5-125

0,7-2,0

0,03-0,15

н.д.

0,9-1,5

50-87

н.д.

1,3-38

н.д.

Каштановая

100-200

0,30-0,90

0,6-20

8,0-14,0

0,06-0,14

600-1270

1,5-75

0,2-2,0

0,09-0,62

0,1-6,0

н.д.

2,0-9,8

н.д.

Бурая

40,5

0,38-1,95

14-44,5

6,0-12,0

32,5-54,0

0,03-0,20

390-580

1,5-75

0,4-2,8

0,06-0,12

2,3-3,8

0,57-2,25

н.д.

0,3-5,3

н.д.

Роль в растении

Биохимические функции

Роль микроэлементов для растений многогранна. Они призваны улучшать обмен веществ, устранять функциональные нарушения, содействовать нормальному течению физиолого-биохимических процессов, влиять на процессы фотосинтеза и дыхания. Под действием микроэлементов возрастает устойчивость растений к бактериальным и грибковым заболеваниям, неблагоприятным факторам окружающей среды (засухе, повышению или понижению температуры, тяжелой зимовке и прочим).

Установлено, что микроэлементы входят в состав большого числа ферментов, играющих важную роль в жизни растений. Все биохимические реакции синтеза, распада, обмена органических веществ протекают только при участии ферментов.

,

в составе микроудобрений повышают активность ферментов пероксидазы и полифенолоксидазы как в семядолях, так и в корнях гороха, но не изменяют их активности в проростках. При этом, и у гороха, и у кукурузы пероксидазная окислительная система преобладает над полифенолоксидазной.

Роль в растении и главные функции некоторых необходимых питательные микроэлементов, согласно данным:

Микроэлемент

В какие компоненты входит

Процессы, в которых участвует

Фосфоглюконаты

Метаболизм и перенос углеводов,

Синтез флавоноидов,

Синтез нуклеиновых кислот,

Утилизация фосфата,образование полифенолов.

Кофермент кобамид

Симбиотическая фиксация азота (возможно и у не клубеньковых растений), стимулирование окислительно-восстановительных реакций при синтезе хлорофилла и протеинов.

Разнообразные оксиданты, пластоцианины, ценилоплазмин.

Окисление, фотосинтез, метаболизм протеинов и углеводов,

Возможно, участвует в симбиотической фиксации азота и окислительно-восстановительных реакциях.

Тирозин и его производные у покрытосеменных и водорослей

Многие ферментные системы

Фотопродукция кислорода в хлоропластах и косвенное участие в восстановлении NO 3 -

Нитратредуктаза, нитрогеназа, оксидазы и молибденоферридоксин

Фиксация азота, восстановление NO 3 -

Окислительно-восстановительные реакции

Порфины, гемопротеины

Метаболизм липидов, фотосинтез в зеленых водорослях и, возможно, участие в фиксации N 2

Ангидразы, дегидрогеназы, протеиназы и пептидазы

Метаболизм углеводов и белков

Недостаток (дефицит) микроэлементов в растениях

При недостаточном поступлении какого-либо микроэлемента из числа необходимых питательных элементов рост растения отклоняется от нормы или прекращается вовсе, а дальнейшее развитие растения, в особенности его метаболические циклы, нарушаются.

При недостатке микроэлементов активность многих ферментов резко снижается. Например, установлено, что при недостатке меди резко падает активность ферментов, в состав которых входит медь, а именно, полифенолоксидазы и аскорбатоксидазы.

Симптомы недостаточности (дефицита) трудно свести к одному знаменателю, но, все же, они характерны для конкретных микроэлементов. Наиболее часто наблюдается хлороз.

Визуальная симптоматика очень важна для диагностики недостаточности, но нарушения метаболических процессов и, как следствие, потеря биомассы продукции могут наступать прежде, чем симптомы недостаточности будут заметны. Для улучшения методов диагностики дефицита микроэлементов ряд авторов предлагает биохимические индикаторы. К сожалению, широкое применение этого способа ограничено в связи с большой изменчивостью энзиматической активности и трудностью определения данного показателя.

Наиболее широко используются тесты - анализ почв и растений. Но и в этом случае неподвижные формы микроэлементов, находящиеся в старых частях растения, могут исказить данные. Однако анализ растительных тканей успешно используют для установления дефицита микроэлементов путем сравнения с содержанием этих соединений в тех же тканях нормальных растений, того же возраста и в тех же органах.

При устранении дефицита микроэлементов при помощи удобрений следует учитывать тот факт, что подобная процедура является эффективной, только если содержание элемента в почве либо его доступность достаточно низкие.

В любом случае, формирование дефицита микроэлементов в растениях является результатом сложного взаимодействия нескольких факторов. Многочисленные наблюдения доказали, что свойства и генезис почв - это главные причины, вызывающие дефицит микроэлементов в растении. Обычно недостаток микроэлементов связан с почвами высокой кислотности (светлыми песчанистыми) и щелочными (известковистыми) почвами с неблагоприятным водным режимом, а также с избытком фосфатов, азота, кальция, оксидов железа и марганца.

Симптомы недостатка микроэлементов питания у сельскохозяйственных культур, согласно данным:

Элемент

Симптомы

Чувствительные к ультуры

Хлороз и покоричневение молодых листьев,

Погибшие верхушечные почки,

Нарушение развития цветов,

Поражение сердцевины растений и корней,

Мультипликация при делении клеток

Капуста и близкие виды,

Сельдерей,

Виноград,

Фруктовые деревья (груши и яблони)

Меланизм,

Белые скрученные макушки,

Ослабление образования метелок,

Нарушение одревеснения

Злаки (овес),

Подсолнечник,

Пятна хлороза,

Некроз молодых листьев,

Ослабленный тургор

Злаки (овес),

Фруктовые деревья (яблони, вишни, цитрусовые)

Хлороз края листовой пластинки,

Нарушение свертывания цветной капусты,

Огненные края и деформация листьев,

Разрушение зародышевых тканей.

Капуста, близкие виды,

Межжилковый хлороз (у однодольных),

Остановка роста,

Розетчатость листьев у деревьев,

Фиолетово-красные точки на листьях

Зерновые (кукуруза),

Виноград,

Фруктовые деревья (цитрусы).

Избыток микроэлементов в растениях

Метаболические нарушения в растениях вызывают не только недостаток, но и избыток элементов питания. Растения более устойчивы к повышенной, чем к пониженной концентрации микроэлементов.

Главные реакции, связанные с токсичным действием микроэлементов:

  • изменение проницаемости клеточных мембран;
  • реакции тиольных групп с катионами;
  • конкуренция с жизненно важными метаболитами;
  • большое сродство с фосфатными группами и активными центрами в АДФ и АТФ;
  • захват в молекулах позиций, занимаемых жизненно важными группами, такими, как фосфат и нитрат.

Оценка влияния токсичных концентраций элементов на растение достаточно сложна, поскольку зависит от множества факторов. К числу наиболее важных относят пропорции, в которых ионы и их соединения присутствуют в почвенном растворе.

Например, токсичность арсената и селената заметно понижается при избытке сульфата и фосфата. Металлоорганические соединения могут быть более токсичными, чем катионы того же элемента. Кислородные анионы элементов, как правило, более ядовиты, чем их простые катионы.

Наиболее токсичными для высших растений являются , никель , свинец , .

Видимые симптомы токсичности изменяются в зависимости от вида растения, но имеются и общие, неспецифические симптомы фитотоксичности: хлорозные и бурые точки на листовых пластинках и их краях, а также коричневые чахлые корни кораллоподобной конфигурации.

Симптомы токсичности микроэлементов у распространенных с/х культур, согласно данным:

Элемент

Симптомы

Чувствительные культуры

Хлороз краев и концов листьев,

Бурые точки на листья,

Загнивание ростовых точек,

Скручивание и отмирание старых листьев

Картофель,

Помидоры,

Подсолнечник,

Белые края и кончики листьев,

Уродливые кончики корней

Картофель,

Помидоры,

Подсолнечник,

Темно-зеленые листья,

Корни толстые, короткие или похожие на колючую проволоку,

Угнетение образования побегов

Саженцы цитрусовых, Гладиолусы

Хлороз и некротические поражения у старых листьев,

Буровато-черные или красные некротические пятна,

Накопление частиц оксида марганца в клетках эпидермиса,

Засохшие кончики листьев,

Чахлые корни

Картофель,

Пожелтение или покоричневение листьев,

Угнетение роста корней,

Угнетение кущения

Хлороз и некроз концов листьев,

Межжилковый хлороз молодых листьев,

Задержка роста у растения в целом,

Корни повреждены, похожи на колючую проволоку.

Содержание микроэлементов в различных соединениях

Микроудобрения - это удобрения, в которых действующим веществом является один (или несколько) микроэлементов. Они могут быть представлены как в виде минеральных форм, так и органоминеральными соединениями. Микроудобрения классифицируют по основному элементу, который они содержат (марганцевые, цинковые, медьсодержащие и прочее).

Микроэлементы могут входить и в состав макроудобрений в виде примесей. Определенное количество микроэлементов привносится в почву и в составе органических удобрений. На практике в качестве микроудобрений часто используют отходы различных производств, обогащенные микроэлементами.

Способы применения микроудобрений и удобрений, содержащих микроэлементы

Микроудобрения применяют для внесения в почву, некорневых подкормок и предпосадочной обработки семян. Дозы микроудобрений малы. Это требует высокой точности дозирования и равномерности внесения.

Внесение в почву

применяется для радикального повышения содержания микроэлементов в почве на протяжении всего вегетационного периода. При этом способе могут наблюдаться отрицательные эффекты:
  • образование трудно растворимых форм микроэлементов,
  • вымывание микроэлементов за пределы корнеобитаемого слоя.

Не рекомендуется вносить в почву дорогостоящие виды микроудобрений, особенно осенью. В данном случае лучше использовать различные макроудобрения, модифицированные микроэлементами, труднодоступные промышленные отходы и удобрения пролонгированного действия.

Предпосевная обработка семян

- самый распространенный способ использования микроудобрений. Этот способ технологичен и позволяет сочетать обработку семян с их посевом. Именно такая форма обработки способствует оптимизации питания растения микроэлементами на самых ранних стадиях развития. Часто обработку семян микроэлементами сочетают с применением пленкообразующих веществ, регуляторов роста и протравителей. Этот процесс носит название инкрустации семян.

Некорневые подкормки

рекомендуется проводить при непосредственном обнаружении дефицита микроэлемента. Этот способ позволяет корректировать питание растений микроэлементами, избегая негативных последствий внесения микроудобрений в почву.

Самое ценное в жизни – это здоровье. Чтобы сохранить и укрепить его, важно обеспечить свой организм всеми необходимыми, биологически значимыми веществами, в том числе макро- и микроэлементами. А для этого надо тщательно следить за своим питанием. Ведь именно из продуктов мы получаем почти все элементы, требующиеся для нормального функционирования организма.

Что такое макро- и микроэлементы

Макроэлементы содержатся в нашем организме в значительном количестве (больше 0,01% массы тела, иначе говоря, их содержание в теле взрослого человека измеряется граммами и даже килограммами). Макроэлементы подразделяют на:

  • биогенные элементы, или макронутриенты, составляющие структуру живого организма. Из них формируются белки, углеводы, жиры и нуклеиновые кислоты. Это кислород, азот, водород, углерод;
  • остальные макроэлементы, которые имеются в организме в больших количествах: кальций, калий, магний, натрий, сера, фосфор.

К микроэлементам относятся: железо, цинк, йод, селен, медь, молибден, хром, марганец, кремний, кобальт, фтор, ванадий, серебро, бор. Они участвуют во всех процессах жизнедеятельности и являются катализаторами биохимических реакций. Их суточное потребление менее 200 мг, и содержатся они в организме в маленьких дозах (менее 0,001% массы тела).

Причины и последствия дефицита макро- и микроэлементов

Причинами недостатка биологических элементов чаще всего бывают:

  • неправильное, несбалансированное или нерегулярные питание;
  • плохое качество питьевой воды;
  • неблагоприятные условия среды, связанные с климатическими и экологическими условиями;
  • большая потеря крови при чрезвычайной ситуации;
  • применение лекарственных средств, способствующих выведению элементов из организма.

Недостаток микро- и макроэлементов ведет к патологическим изменениям в организме, нарушению водного баланса, обмена веществ, повышению или понижению давления, замедлению химических процессов. Все структурные изменения внутри клеток приводят к общему снижению иммунитета, а также появлению различных заболеваний: гипертонии, дисбактериоза, колитов, гастритов, болезней сердечно-сосудистой системы, аллергии, ожирения, сахарного диабета и многих других. Такие заболевания ведут к ухудшению функционирования организма, замедлению умственного и физического развития, что особенно страшно в детском возрасте.

Надо также помнить, что вреден бывает и избыток биологически значимых элементов. В слишком большом количестве многие из них оказывают токсическое действие на организм и даже порой оказываются смертельно опасны.

Поэтому чрезвычайно важно следить за рационом питания, образом жизни и, конечно, нужно знать, какие продукты богаты элементами, полезными для поддержания всех функционально значимых процессов организма.

Важнейшие макро- и микроэлементы

Кальций является основным элементом костной ткани, а также требуется для поддержания ионного баланса организма, отвечает за активацию некоторых ферментов. Большое количество кальция находится в молочных продуктах, поэтому ежедневно в меню необходимо включать молоко, сыр, кефир, ряженку, творог.

Фосфор участвует в энергетических реакциях, является структурным элементом косной ткани, нуклеиновых кислот. Рыба, мясо, фасоль горох, хлеб, овсяная, ячневая крупа богаты фосфором.

Магний отвечает за процессы обмена углеводов, энергии, поддерживает работу нервной системы. Находится в значительном количестве в таких продуктах, как творог, орехи, ячневая крупа, овощи, горох, фасоль.

Натрий играет большую роль в поддержании буферного баланса, кровяного давления, работы мышц и нервной системы и активации ферментов. Главными источниками натрия считают хлеб и поваренную соль.

Калий – внутриклеточный элемент, поддерживающий водно-солевой баланс организма, отвечает за сокращение сердечных мышц, способствует поддержанию нормального давления крови. Им богаты следующие продукты: чернослив, клубника, персики, морковь, картофель, яблоки, виноград.

Хлор важен для синтеза желудочного сока, плазмы крови, он активирует ряд ферментов. Поступает в человеческий организм главным образом из хлеба и соли.

Сера является структурным элементом многих белков, витаминов и гормонов. Продукты животного происхождения богаты этим элементом.

Железо играет важнейшую роль в нашем организме. Оно входит в состав большинства ферментов и гемоглобина, это белок, который обеспечивает перенос кислорода ко всем органам и тканям организма. Также железо необходимо для формирования эритроцитов и регулирует кровообращение. Данным элементом богаты говяжья и свиная печень, почки, сердце, зелень, орехи, гречневая, овсяная и перловая крупы.

Цинк стимулирует процессы сокращения мышц, кровообращение, отвечает за нормальное функционирование вилочковой железы. От цинка напрямую зависит красота и здоровье кожи, ногтей и волос. Морепродукты, грибы, смородина, малина, отруби содержат большие количества этого микроэлемента.

Йод является важнейшим элементом для щитовидной железы, которая обеспечивает нормальную работу мышечной, нервной, иммунной систем организма. Данным элементом насыщены морепродукты, черноплодная рябина, фейхоа, фасоль в стручках, помидоры, земляника.

Хром активирует процессы, связанные с передачей наследственной информации, участвует в обмене веществ, предотвращает развитие сахарного диабета. Входит в состав следующих продуктов: телячья печень, яйца, ростки пшеницы, кукурузное масло.

Кремний отвечает за работу лейкоцитов, эластичность тканей, способствует укреплению сосудов и кожных покровов, участвует в поддержании иммунитета и снижает возможность заражения различными инфекциями. Содержится в капусте, моркови, мясе, морских водорослях.

Медь участвует в процессах кровообращения и дыхания. При ее нехватке развивается атрофия сердечных мышц. Находится в таких продуктах, как грейпфрут, мясо, творог, крыжовник, пивные дрожжи.

Таким образом, для здоровья и нормального функционирования организма необходимо вводить в рацион полезные продукты. А в зимне-весенний период желательно применять комплексы поливитаминов. Это поможет укрепить иммунитет и исключить простудные и другие заболевания.

Биологи делят все химические элементы, содержащиеся в нашем теле, на две большие группы: макро- и микроэлементы. Вещества, которые присутствуют в организме в сравнительно больших количествах, относятся к макроэлементам. В их числе – магний, кальций, натрий, фосфор и натрий. Они являются теми кирпичиками, из которых состоят наши внутренние органы и ткани.

Но гораздо интереснее роль других компонентов, которые присутствуют в нашем организме в ничтожных количествах. Какие элементы относятся к микроэлементам, и какова их роль в организме?

Микро-ускорители

Как известно, многие химические процессы проходят гораздо быстрее при наличии катализатора. А к микроэлементам относятся элементы, выполняющие аналогичную роль в биохимических процессах живых организмов. Эти компоненты, как мы уже говорили, содержатся в телах живых существ в мизерных количествах.

Большинство веществ, относящихся к группе микроэлементов, попадает в системы жизнеобеспечения из внешней среды, и лишь малое их количество может регенерироваться нашим организмом самостоятельно.

Какие бывают микроэлементы, и что происходит, если их не принимать?

Важнейшими микроэлементами, влияющими на процессы жизнедеятельности, являются эссенциальные нутриенты (незаменимые факторы питания). К микроэлементам относятся:

  • железо;
  • цинк;
  • селен;
  • хром;
  • ванадий;
  • молибден;
  • марганец;
  • кобальт;
  • хром.

Содержание некоторых из них настолько мало, что может быть измерено лишь специальными средствами для анализа. Но при полном отсутствии или недостаточном поступлении микроэлементов в организм прекращается рост, начинаются процессы деградации: нарушаются процессы обмена веществ, алгоритмы деления клеток, передачи наследственной информации. Комплекс заболеваний, вызванных недостатком микроэлементов, называется микроэлементозами.

Причины микроэлементоза могут быть различны. Так, постоянный приток радиоактивных изотопов и фоновое излучение всегда закачиваются дисбалансом микроэлементов в теле человека. К числу вторичных факторов появления данного недуга следует отнести скудную пищу, отсутствие свежего воздуха, естественного освещения, некачественную питьевую воду, малоподвижный образ жизни.

Весомым фактором, приводящим к потере микроэлементов, считается регулярное употребление алкоголя, курение, употребление наркотических веществ. Чаще всего нездоровый образ жизни провоцирует дефицит кальция, цинка, селена, йода, магния. Чтобы восполнить нехватку этих веществ, организм действует по алгоритму, который биологи назвали механизмом замещения.

Микроэлементы и механизмы замещения

При нормальном функционировании всех органов, организм получает необходимые элементы из окружающей среды именно в том количестве, в котором это необходимо. Но что будет, если необходимый элемент не будет поступать в организм? Рассмотрим это на простом примере.

К микроэлементам относятся кальций и его соединения, которые необходимы для формирования костной ткани. Если это вещество организм не будет получать в достаточном количестве, он будет замещать его другим, структура которого максимально подобна химическому строению недостающего элемента. Так, распространенным микроэлементом из группы кальция является стронций-90. Его радиоактивный изотоп содержится в почве и атмосфере больших промышленных городов. И если в организме не будет хватать кальция, то именно стронций-90 – наиболее вероятный кандидат на замену. Чем чревато такое замещение?

Стронций будет накапливаться в организме по тому же механизму, что и кальций – в костях, зубах, волосах и кровеносных сосудах, вызывая различные болезни, и провоцируя образование злокачественных опухолей. Если же человек вовремя переключится на здоровое питание, то вредоносный стронций постепенно вымоется из организма, уступая свое место кальцию.

Зачем нужны БАДы

Поэтому каждому из нас необходимо принять верное решение, и обеспечить свой организм постоянным притоком нужных микроэлементов. Если нет возможности кардинально поменять свой образ жизни, можно приступить к изменению рациона питания, добавляя туда биологически активные добавки.

К микроэлементам относятся все вещества, которые можно синтезировать средствами современной фармакологии. Правильно подобранный комплекс БАД насытит организм спектром нужных микроэлементов и витаминов, повысит тонус, укрепит иммунитет.

А постоянный прием таких добавок способствует выведению из внутренних органов человека радиоактивных изотопов и замещению их стабильными элементами.

Биоэлементы, макроэлементы и микроэлементы входящие в состав клетки

В живых клетках обычно обнаруживаются следы почти всех элементов, присутствующих в окружающей среде, однако для жизни их необходимо около 40.

В зависимости от количественного содержания они делятся на макроэлементы, содержащиеся в десятых и сотых долях процента, и микроэлементы, содержащиеся в тысячных и миллионных долях процента.

Важнейшими биогенными элементами являются кислород (составляет около 70% массы организмов) , углерод (18%), водород (10%), азот, а также кальций, калий, кремний, магний, фосфор, сера, натрий, хлор, железо. Их среднее содержание - более 0,01% биомассы. Все вышеперечисленные биогенные элементы составляют группу макроэлементов.

Микроэлементы - химические элементы, присутствующие в организмах в низких концентрациях (обычно тысячные доли процента и ниже) . Цинк, медь, мышьяк, марганец, бор, фтор, ванадий, бром, молибден, селен, радий и некоторые др. относятся к микроэлементам.

Калий

Калий - один из биогенных элементов, постоянная составная часть растений и животных. Суточная потребность в калие. у взрослого человека (2-3 г ) покрывается за счёт мяса и растительных продуктов; у грудных детей потребность в калие. (30 мг/кг ) полностью покрывается грудным молоком, в котороммг % К. У животных содержание калия составляет в среднем 2,4 г/кг . В отличие от натрия, калий сосредоточен главным образом в клетках, во внеклеточной среде его много меньше. В клетке калий распределён неравномерно.

Ионы калия участвуют в генерации и проведении биоэлектрических потенциалов в нервах и мышцах, в регуляции сокращений сердца и др. мышц, поддерживают осмотического давление и гидратацию коллоидов в клетках, активируют некоторые ферменты. Метаболизм калия тесно связан с углеводным обменом; ионы калия влияют на синтез белков. К + в большинстве случаев нельзя заменить на Na + . Клетки избирательно концентрируют К + .

Натрий - один из основных элементов, участвующих в минеральном обмене животных и человека. Содержится главным образом во внеклеточных жидкостях (в эритроцитах человека около 10 ммоль /кг , в сыворотке крови 143 ммоль /кг ); участвует в поддержании осмотического давления и кислотно-щелочного равновесия, в проведении нервных импульсов. Суточная потребность человека в хлористом натрии колеблется от 2 до 10г и зависит от количества этой соли, теряемой с потом. Концентрация ионов натрия. в организме регулируется в основном гормоном коры надпочечников - альдостероном.

Кальций - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Ca у некоторых организмов содержание Ca достигает 38%; у человека - 1,4-2%. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов Ca 2+ , Na + и К + во внеклеточных средах. Ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и др. животных, активации ряда ферментов. Ионы Ca 2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свертывании. В клетках почти весь Ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20-40% Ca может быть связано с белками.

Магний - постоянная часть растительных и животных организмов (в тысячных - сотых долях процента). Концентраторами магния являются некоторые водоросли, накапливающие до 3% М. (в золе), некоторые фораминиферы - до 3,5%, известковые губки - до 4%. Магний входит в состав зелёного пигмента растений - хлорофилла (в общей массе хлорофилла растений Земли содержится около 100 млрд. т М.), а также обнаружен во всех клеточных органеллах растений и рибосомах всех живых организмов. Магний активирует многие ферменты, вместе с кальцием и марганцем обеспечивает стабильность структуры хромосом и коллоидных систем в растениях, участвует в поддержании тургорного давления в клетках.

Животные и человек получают магний с пищей. Суточная потребность человека в магние - 0,3-0,5 г ; в детском возрасте, а также при беременности и лактации эта потребность выше. Нормальное содержание магния в крови - примерно 4,3 мг% ; при повышенном содержании наблюдаются сонливость, потеря чувствительности, иногда паралич скелетных мышц. В организме магний накапливается в печени, затем значительная его часть переходит в кости и мышцы. В мышцах магний участвует в активировании процессов анаэробного обмена углеводов. Антагонистом магния в организме является кальций. Нарушение магниево-кальциевого равновесия наблюдается при рахите, когда магний из крови переходит в кости, вытесняя из них кальций. Недостаток в пище солей магния нарушает нормальную возбудимость нервной системы, сокращение мышц..

Азот в организме один из основных биогенных элементов, входящих в состав важнейших веществ живых клеток - белков и нуклеиновых кислот. Однако количество азота в организме невелико (1 - 3% на сухую массу). Находящийся в атмосфере молекулярный азот могут усваивать лишь некоторые микроорганизмы и сине-зеленые водоросли.

Значительные запасы азота сосредоточены в почве в форме различных минеральных (аммонийные соли, нитраты) и органических соединений (азот белков, нуклеиновых кислот и продуктов их распада, т. е. ещё не вполне разложившиеся остатки растений и животных). Растения усваивают азот из почвы как в виде неорганических, так и некоторых органических соединений. В природных условиях для питания растений большое значение имеют почвенные микроорганизмы (аммонификаторы), которые минерализуют органический азот почвы до аммонийных солей. Нитратный азот почвы образуется в результате жизнедеятельности открытых С. Н. Виноградским в 1890 нитрифицирующих бактерий, окисляющих аммиак и аммонийные соли до нитратов. Часть усвояемого микроорганизмами и растениями нитратного азота теряется, превращаясь в молекулярный азот под действием денитрифицирующих бактерий. Растения и микроорганизмы хорошо усваивают как аммонийный, так и нитратный азот, восстанавливая последний до аммиака и аммонийных солей. Микроорганизмы и растения активно превращают неорганический аммонийный азот в органические соединения азота - амиды (аспарагин и глутамин) и аминокислоты. Как показали Д. Н. Прянишников и В. С. Буткевич, азот в растениях запасается и транспортируется в виде аспарагина и глутамина. При образовании этих амидов обезвреживается аммиак, высокие концентрации которого токсичны не только для животных, но и для растений. Амиды входят в состав многих белков как у микроорганизмов и растений, так и у животных. Синтез глутамина и аспарагина путём ферментативного амидирования глутаминовой и аспарагиновой кислот осуществляется не только у микроорганизмов и растений, но в определённых пределах и у животных.

Синтез аминокислот происходит путём восстановительного аминирования ряда альдегидокислот и кетокислот, возникающих в результате окисления углеводов (В. Л. Кретович), или путём ферментативного переаминирования (А. Е. Браунштейн и М. Г. Крицман, 1937). Конечными продуктами усвоения аммиака микроорганизмами и растениями являются белки, входящие в состав протоплазмы и ядра клеток, а также отлагающиеся в виде запасных белков. Животные и человек способны лишь в огранической мере синтезировать аминокислоты. Они не могут синтезировать 8 незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и потому для них основным источником азота являются белки, потребляемые с пищей, т. е., в конечном счёте, - белки растений и микроорганизмов.

Белки во всех организмах подвергаются ферментативному распаду, конечными продуктами которого являются аминокислоты. На следующем этапе в результате дезаминирования органический азот аминокислот вновь превращается в неорганический аммонийный азот. У микроорганизмов и особенно у растений аммонийный азот может использоваться для нового синтеза амидов и аминокислот. У животных обезвреживание аммиака, образующегося при распаде белков и нуклеиновых кислот, осуществляется путём синтеза мочевой кислоты (у пресмыкающихся и птиц) или мочевины (у млекопитающих, в том числе и у человека), которые затем выводятся из организма. С точки зрения обмена азота растения, с одной стороны, и животные (и человек), с другой, отличаются тем, что у животных утилизация образующегося аммиака осуществляется лишь в слабой мере - большая часть его выводится из организма; у растений же обмен азота "замкнут" - поступивший в растение азот возвращается в почву лишь вместе с самим растением.

Фосфор - один из важнейших биогенных элементов, необходимый для жизнедеятельности всех организмов. Присутствует в живых клетках в виде орто- и пирофосфорной кислот и их производных, а также входит в состав нуклеотидов, нуклеиновых кислот, фосфопротеидов, фосфолипидов, фосфорных эфиров углеводов, многих коферментов и др. органических соединений. Благодаря особенностям химического строения атомы фосфора, подобно атомам серы, способны к образованию богатых энергией связей в макроэргических соединениях; аденозинтрифосфорной кислоте (АТФ), креатин фосфате и др. Главную роль в превращениях соединений фосфора в организме животных и человека играет печень. Обмен фосфорных соединений регулируется гормонами и витамином D.

Суточная потребность человека в фосфоре 1=1,2 г (у детей она выше, чем у взрослых). Из продуктов питания наиболее богаты фосфором сыр, мясо, яйца, зерно бобовых культур (горох, фасоль и др.). При недостатке фосфора в организме у животных и человека развиваются остеопороз и др. заболевания костей, у растений = фосфорное голодание.

В виде органических и неорганических соединений сера постоянно присутствует во всех живых организмах и является важным биогенным элементом. Её среднее содержание в расчёте на сухое вещество составляет: в морских растениях около 1,2%, наземных - 0,3%, в морских животных 0,5-2%, наземных - 0,5%. Биологическая роль серы определяется тем, что она входит в состав широко распространённых в живой природе соединений: аминокислот (метионин, цистеин), и следовательно белков и пептидов; коферментов (кофермент А, липоевая кислота), витаминов (биотин, тиамин), глутатиона и другие Сульфгидрильные группы (- SH) остатков цистеина играют важную роль в структуре и каталитическая активности многих ферментов. Образуя дисульфидные связи (- S - S -) внутри отдельных полипептидных цепей и между ними, эти группы участвуют в поддержании пространственной структуры молекул белков.

Иод - необходимый для животных и человека микроэлемент. В почвах и растениях таёжно-лесной нечернозёмной, сухостепной, пустынной и горных биогеохимических зон иод содержится в недостаточном количестве или не сбалансирован с некоторыми другими микроэлементами (Со, Mn, Cu); с этим связано распространение в этих зонах эндемического зоба.

В животный организм иод поступает с пищей, водой, воздухом. Основной источник иода - растительные продукты и корма. Всасывание иод происходит в передних отделах тонкого кишечника. В организме человека накапливается от 20 до 50 мг иода, в том числе в мышцах околомг , в щитовидной железе в норме 6-15 мг . Суточная потребность в иоде человека и животных - около 3 мкг на 1 кг массы (возрастает при беременности, усиленном росте, охлаждении). Введение в организм иода повышает основной обмен, усиливает

При приёме внутрь препараты иода оказывают влияние на обмен веществ, усиливают функцию щитовидной железы. Малые дозы иода (микроиод) тормозят функцию щитовидной железы, действуя на образование тиреотропного гормона передних долей гипофиза.

Фтор постоянно входит в состав животных и растительных тканей; микроэлемент. В виде неорганических соединений содержится главным образом в костях животных и человека мг/кг ; особенно много фтора. в зубах. Поступает в организм животных и человека преимущественно с питьевой водой, оптимальное содержание фтора в которой 1-1,5 мг/л. При недостатке фтора у человека развивается кариес зубов, при повышенном поступлении - флюороз. Биологическая роль фтора. изучена недостаточно. Установлена связь обмена фтора с образованием костной ткани скелета и особенно зубов.

Хлор - один из биогенных элементов, постоянный компонент тканей растений и животных. Суточная потребность взрослого человека в хлоре. (2-4 г) покрывается за счёт пищевых продуктов. С пищей хлор поступает обычно в избытке в виде хлорида натрия и хлорида калия. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование.

Бром - постоянная составная часть тканей животных и растений. Бром найден в различных секретах (слезах, слюне, поте, молоке, желчи). Введённые в организм животных и человека бромиды усиливают концентрацию процессов торможения в коре головного мозга, содействуют нормализации состояния нервной системы, пострадавшей от перенапряжения тормозного процесса. Одновременно, задерживаясь в щитовидной железе, бром вступает в конкурентные отношения с йодом, что влияет на деятельность железы, а в связи с этим - и на состояние обмена веществ.

Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рациономмг железа, что значительно превышает его суточную потребность. Основное депо железа в организме - печень и селезёнка. За счёт железа ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками.

Медь - необходимый для растений и животных микроэлемент. Основная биохимическая функция меди - участие в ферментативных реакциях в качестве активатора или в составе медьсодержащих ферментов.

Содержание меди у человека колеблется (на 100 г сухой массы) от 5 мг в печени до 0,7 мг в костях, в жидкостях тела - от 100 мкг (на 100 мл ) в крови до 10 мкг в спинномозговой жидкости; всего меди в организме взрослого человека около 100 мг. Медь входит в состав ряда ферментов (например, тирозиназы, цитохромоксидазы), стимулирует кроветворную функцию костного мозга. Малые дозы меди влияют на обмен углеводов (снижение содержания сахара в крови), минеральных веществ (уменьшение в крови количества фосфора) и др. Увеличение содержания меди в крови приводит к превращению минеральных соединений железа в органические, стимулирует использование накопленного в печени железа при синтезе гемоглобина.

Цинк как один из биогенных элементов постоянно присутствует в тканях растений и животных. Среднее содержание цинка в большинстве наземных и морских организмов - тысячные доли процента. Богаты цинком грибы, особенно ядовитые, лишайники, хвойные растения и некоторые беспозвоночные морские животные, например устрицы (0,4% сухой массы). В зонах повышенных содержаний цинка в горных породах встречаются концентрирующие цинк т. н. галмейные растения. В организм растений цинк поступает из почвы и воды, животных - с пищей. Суточная потребность человека в цинке (5-20 мг ) покрывается за счёт хлебопродуктов, мяса, молока, овощей; у грудных детей потребность в цинке (4-6 мг ) удовлетворяется за счёт грудного молока.

Биологическая роль цинка связана с его участием в ферментативных реакциях, протекающих в клетках. Он входит в состав важнейших ферментов: карбоангидразы, различных дегидрогеназ, фосфатаз, связанных с дыханием и др. физиологическими процессами, протеиназ и пептидаз, участвующих в белковом обмене, ферментов нуклеинового обмена (РНК- и ДНК-полимераз) и др. Цинк играет существенную роль в синтезе молекул информационной РНК на соответствующих участках ДНК (транскрипция), в стабилизации рибосом и биополимеров (РНК, ДНК, некоторые белки).

В растениях наряду с участием в дыхании, белковом и нуклеиновом обменах цинк регулирует рост, влияет на образование аминокислоты триптофана. повышает содержание гиббереллинов. Цинк стабилизирует макромолекулы различных биологических мембран и может быть их интегральной частью, влияет на транспорт ионов, участвует в надмолекулярной организации клеточных органелл. В присутствии цинка в культуре Ustilago sphaerogena формируется большее число митохондрий, при недостатке цинка у Euglena gracilis исчезают рибосомы. Цинк необходим для развития яйцеклетки и зародыша (в его отсутствии не образуются семена). Он повышает засухо-, жаро- и холодостойкость растений. Недостаток цинка ведёт к нарушению деления клеток, различным функциональным болезням - побелению верхушек кукурузы, розеточности растений и др. У животных, помимо участия в дыхании и нуклеиновом обмене, цинк повышает деятельность половых желёз, влияет на формирование скелета плода. Показано, что недостаток цинка у грудных крыс уменьшает содержание РНК и синтез белка в мозге, замедляет развитие мозга. Из слюны околоушной железы человека выделен цинксодержащий белок; предполагается, что он стимулирует регенерацию клеток вкусовых луковиц языка и поддерживает их вкусовую функцию. Цинк играет защитную роль в организме при загрязнении среды кадмием.

Медицинское значение цинка. Дефицит цинка в организме ведёт к карликовости, задержке полового развития; при его избыточном поступлении в организм возможны (по экспериментальным данным) канцерогенное влияние и токсическое действие на сердце, кровь, гонады и др. Производственные вредности могут быть связаны с неблагоприятным воздействием на организм как металлического цинка, так и его соединений. При плавке цинкосодержащих сплавов возможны случаи литейной лихорадки. Препараты цинка в виде растворов (сульфат цинка) и в составе присыпок, паст, мазей, свечей (окись цинка) применяют в медицине как вяжущие и дезинфицирующие средства.

Постоянно присутствуя в тканях животных и растений, кобальт участвует в обменных процессах. В животном организме содержание кобальта зависит от его уровня в кормовых растениях и почвах. Концентрация кобальта в растениях пастбищ и лугов в среднем составляет 2,2·,5·10 -5 % на сухое вещество. Способность к накоплению кобальта у бобовых выше, чем у злаковых и овощных растений. В связи с высокой способностью к концентрации кобальта морские водоросли по его содержанию мало отличаются от наземных растений, хотя в морской воде кобальта значительно меньше, чем в почвах. Суточная потребность человека в кобальте равна примерно 7-15 мкг и удовлетворяется за счёт его поступления с пищей. Потребность животных в кобальте зависит от их вида, возраста и продуктивности. Наиболее нуждаются в кобальте жвачные, которым он необходим для развития симбиотической микрофлоры в желудке (главным образом в рубце). Суточная потребность в кобальте у дойных коров составляет 7-20 мг, у овец - около 1 мг. При недостатке кобальта в рационе снижается продуктивность животных, нарушаются обмен веществ и кроветворение, у жвачных возникают эндемичные заболевания - акобальтозы.

Биологическая активность кобальта определяется его участием в построении молекулы витамина B 12 и его коферментных форм, фермента транскарбоксилазы. Кобальт необходим для проявления активности ряда ферментов. Он влияет на обмен белка и синтез нуклеиновых кислот, на обмен углеводов и жиров, окислительно-восстановительные реакции в животном организме. Кобальт - мощный активатор кроветворения и синтеза эритропоэтинов. Кобальт участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует рост, развитие и продуктивность бобовых и растений ряда др. семейств.

Биогенные элементы

Биогенные элементы – это химические элементы, постоянно входящие в состав организмов и выполняющие определенные биологические функции. Биогенные элементы необходимы для существования и жизнедеятельности живых организмов.

Основу живых систем составляют шесть элементов: углерод, водород, кислород, азот, фосфор, сера. Эти элементы называют органогенами; их суммарное содержание в живых организмах превышает 97 % (по массе). Однако перечень биогенных элементов не исчерпывается лишь органогенами. К числу важнейших биогенных элементов относятся также хлор, калий, натрий, магний, кальций, железо, цинк, медь, марганец, ванадий, молибден, бор, кремний, селен, фтор, бром, йод и некоторые другие элементы.

По количественному содержанию в организме биогенные элементы делятся на макро-, микро- и ультрамикроэлементы. Макроэлементы – это элементы, массовая доля которых в живых организмах превышает 0,01 % (кислород, углерод, водород, азот, фосфор, сера, кальций, магний, натрий, хлор). Содержание микроэлементов в организме составляет 10 –5 –10 –3 масс. %; микроэлементами являются фтор, бром, йод, мышьяк, стронций, барий, медь, кобальт. Элементы, массовая доля которых в организме менее 10 –5 %, называют ультрамикроэлементами (ртуть, золото, уран, торий, радий и др.). Часто микроэлементы и ультрамикроэлементы объединяют в одну группу. В таблице 1.1 приведены данные о содержании ряда химических элементов в организме человека .

Таблица 1.1 – содержание некоторых химических элементов в организме человека

Недостаток данной классификации заключается в том, что она отражает лишь содержание элементов в живых организмах, но не указывает на биологическое значение того или иного элемента.

По значимости для жизнедеятельности организма химические элементы можно разделить на 3 группы :

1 – жизненно необходимые (незаменимые) элементы – постоянно содержатся в организме человека и животных, входят в состав ферментов, гормонов и витаминов (C; H; O; N; P; S; Cl; I; K; Na; Mg; Ca; Mn; Fe; Co; Cu; Zn; Mo; V). Их дефицит приводит к нарушению нормального функционирования организма.

2–примесные элементы, постоянно находящиеся в организме; эти элементы постоянно содержатся в организме человека и животных (Ga; Sb; Sr; Br; F; B; Be; Li; Si; Sn; Cs; Al; Ba; Ge; As; Rb; Pb; Ra; Bi; Cd; Cr; Ni; Ti; Ag; Th; Hg; U; Se), однако их биологическая роль малоизучена или неизвестна.

3 – примесные элементы, обнаруживаемые в организме (микропримесные элементы) – данные о содержании этих элементов (Sc; Tl; In; La; Pr; Sm; W; Re; Tb и др.) и их биологической роли в настоящее время отсутствуют.

Как следует из вышеизложенного, перечислить точно все биогенные элементы невозможно из-за сложности определения очень маленьких концентраций микроэлементов и выяснения их биологических функций. В настоящее время известно, что в организме человека и животных обнаруживается свыше 70 элементов таблицы Д.И. Менделеева; около 50 из них присутствуют постоянно, т.е. являются биогенными. Развитие аналитической химии и, в частности, спектрального анализа позволяет расширить перечень биогенных элементов и установить биологическое значение многих из них.

Макроэлементы

Биологически значимые элементы (в противоположность биологически инертным элементам ) - химические элементы, необходимые организму человека или животного для обеспечения нормальной жизнедеятельности. Делятся на макроэлементы (содержание которых в живых организмах составляет больше 0,001 %) и микроэлементы (содержание менее 0,001 %).

Использование термина «минерал» по отношению к биологически значимым элементам

Микро- и макроэлементы (кроме кислорода, водорода, углерода и азота), попадают в организм, как правило, при приёме пищи. Для их обозначения в английском языке существует термин Dietary mineral .

В конце ХХ века российские производители некоторых лекарственных препаратов и биологически активных добавок стали использовать для обозначения макро- и микроэлементов термин минерал, калькируя англоязычное Dietary mineral . С научной точки зрения такое употребление термина «минерал» является неправильным, в русском языке слово минерал следует использовать только для обозначения геологического природного тела с кристаллической структурой. Тем не менее, производители т.н. «биологических добавок», возможно, в рекламных целях, стали называть свою продукцию витамино-минеральными комплексами.

Макроэлементы

Эти элементы слагают плоть живых организмов. Рекомендуемая суточная доза потребления макроэлементов составляет более 200 мг. Макроэлементы, как правило, поступают в организм человека вместе с пищей.

Биогенные элементы

Эти макроэлементы называют биогенными (органогенными) элементами или макронутриентами (англ. macronutrient ). Из макронутриентов преимущественно построены такие органические вещества, как белки, жиры, углеводы, ферменты, витамины и гормоны. Для обозначения макронутриентов иногда используют акроним CHNOPS , состоящий из обозначений соответсвующих химических элементов в таблице Менделеева.

Другие макроэлементы

Микроэлементы

Термин «микроэлементы» получил особое распространение в медицинской, биологической и сельскохозяйственной научной литературе в середине XX века. В частности, для агрономов стало очевидным, что даже достаточное количество «макроэлементов» в удобрениях (троица NPK - азот, фосфор, калий) не обеспечивает нормального развития растений.

Микроэлементами называются элементы, содержание которых в организме мало, но они участвуют в биохимических процессах и необходимы живым организмам. Рекомендуемая суточная доза потребления микроэлементов для человека составляет менее 200 мг. В последнее время производители биологически активных добавок стали использовать заимствованный из европейских языков термин микронутриент (англ. micronutrient ). Под микронутриентами объединяют микроэлементы, витамины и некоторые макроэлементы (калий, кальций, магний, натрий).

Поддержание постоянства внутренней среды (гомеостаза) организма, предусматривает в первую очередь поддержание качественного и количественного содержания минеральных веществ в тканях органах на физиологическом уровне.

Основные микроэлементы

По современным данным более 30 микроэлементов считаются необходимыми для жизнедеятельности растений, животных и человека. Среди них (в алфавитном порядке):

Чем меньше концентрация соединений в организме, тем труднее установить биологическую роль элемента, идентифицировать соединения, в образовании которых он принимает участие. К числу несомненно важных относят ванадий, кремний и др.

Совместимость

В процессе усвоения организмом витаминов, микроэлементов и макроэлементов возможен антагонизм (отрицательное взаимодействие) или синергизм (положительное взаимодействие) между разными компонентами.

Недостаток микроэлементов в организме

Основные причины, вызывающие недостаток минеральных веществ:

  • Неправильное питание или однообразное питание, некачественная питьевая вода.
  • Геологические особенности различных регионов земли - эндемические (неблагоприятные) районы.
  • Большая потеря минеральных веществ по причине кровотечений, болезнь Крона, язвенный колит.
  • Употребление некоторых лекарственных средств, связывающих или вызывающих потерю микроэлементов.

См. также

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Макроэлементы» в других словарях:

МАКРОЭЛЕМЕНТЫ - химические элементы или их соединения, используемые организмами в сравнительно больших количествах: кислород, водород, углерод, азот, железо, фосфор, калий, кальций, сера, магний, натрий, хлор и др. Макроэлементы участвуют в построении… … Экологический словарь

Макроэлементы - химические элементы, из которых состоят основные пищевые вещества, и другие, присутствующие в организме в относительно больших количествах, из которых гигиенически значимыми являются кальций, фосфор, железо, натрий, калий.

Какие химические элементы относят к микроэлементам и каковы их функции в организме человека?

Микроэлементы - содержатся в небольших количествах (в единицах мг и менее). К ним относятся:

Безусловно признанные микроэлементы - дефицит которых в питании вызывает конкретные проявления нарушения обмена веществ и клинические симптомы недостаточности у человека. Эти микроэлементы можно считать незаменимыми (эссенциальными) микронутриентами, потребность в которых в той или иной степени определена. Безусловно признаны железо, медь, марганец, цинк, кобальт, йод, фтор, хром, молибден и селен.

Условно признанные микроэлементы - те, дефицит которых в питании вызывал определенные нарушения у экспериментальных животных. У человека проявлений недостаточности этих микроэлементов пока не установлено, хотя исключить их нельзя. В настоящее время потребность в условно признанных микроэлементах является предположительной. Условно признаны ванадий, никель, стронций, кремний, бор.

Значение минеральных веществ для организма: чрезвычайно многообразно. Основные функции минеральных веществ:

пластическая функция, особенно в построении костной ткани;

регуляция водно-солевого обмена;

поддержание осмотическго давления в клетках и межклеточных жидкостях, что необходимо для передвижения между ними питательных веществ и продуктов обмена;

защитные функции (участие в иммунитете);

входят в состав или активируют действие ферментов, гормонов, витаминов и таким образом участвуют во всех видах обмена веществ;

участие в процессах кроветворения и свертывания крови - они не могут происходить без железа, меди, марганца, кальция и других минеральных элементов.

Нормальная функция нервной, сердечно-сосудистой, пищеварительной и других систем невозможна без минеральных веществ.

Длительный дефицит или избыток минеральных веществ в организме ведет к различным нарушениям обмена веществ и заболеваниям.

Железо необходимо для нормального кроветворения и тканевого дыхания. Оно входит в состав гемоглобина эритроцитов, доставляющего кислород к органам и тканям, миоглобина мышц, ферментов, участвующих в переносе электронов по дыхательной цепи и окислительно-восстановительных процессах.

Йод. В организме здорового взрослого человека содержится около 15-20 мг йода, 80% из которых находится в щитовидной железе. Биологическое значение йода заключается в его участии в образовании гормонов щитовидной железы - тироксина (Т4) и трийодтиронина (ТЗ), которые соответственно на 65 и 59% состоят из йода.

Фтор вместе с кальцием и фосфором участвует в построении костей и зубов и обеспечивает их твердость и крепость. Недостаток фтора в воде и пищевых продуктах способствует развитию кариеса зубов и снижению прочности костей, избыток приводит к возникновению флюороза (поражение костей, крапчатости зубной эмали, хрупкости зубов). Особенностью фтора являются узкие верхние и нижние границы его положительного действия на организм. Если в питьевой воде содержится менее 0,5 мг фтора на 1 л (0,5 мг/л), может возникнуть кариес зубов, если более 1,5-2 мг/л (по некоторым данным, более 1,2 мг/л) - флюороз.

Цинк входит в состав более 200 ферментов, участвующих в самых различных реакциях обмена веществ. Он необходим для деятельности половых желез, гипофиза, надпочечников; является составной частью гормона поджелудочной железы - инсулина. Цинк обеспечивает нормальное кроветворение и костеобразование, поддержание иммунного статуса организма. Он способствует стабилизации клеточных мембран, является фактором антиоксидантной защиты.

Медь. В организме взрослого человека содержится около 150 мг меди, из которых 15-20 мг находятся в печени, а остальное - в других органах и тканях. Биологическая роль меди связана с ее участием в построении примерно 25 ферментов. Медь входит в состав цитохромоксидазы, моноаминоксидазы, тирозиназы, суперокси-дисмутазы и других жизненно важных ферментов. В составе белка церулоплазмина медь участвует в окислении катехоламинов, серотонина и других ароматических аминов, а также в окислении двухвалентного железа в трехвалентное, которое способно связываться с трансферрином и транспортироваться таким образом к органам и тканям. Медь считается кроветворным элементом, участвующим в образовании гемоглобина и эритроцитов.

Селен является одним из ключевых микронутриентов антиоксидантной системы организма. Он входит в состав глутатионпероксидаз и других ферментов. Селен и витамин Е считаются синергистами. Селен положительно влияет на иммунную систему, повышает устойчивость к радиоактивному облучению, участвует в поддержании функции щитовидной железы и репродуктивных органов. Для селена особенно характерна дозозависимость действия: с одной стороны, выявлены его токсичность и канцерогенность, с другой - терапевтическая активность и антиканцерогенность.

Хром. В организме человека присутствуют преимущественно соединения трехвалентного хрома. Соли шестивалентного хрома не имеют физиологического значения и, по некоторым данным, чрезвычайно токсичны для человека. В организме взрослого человека хрома содержится меньше, чем других микроэлементов (6-12 мг). Значительная часть хрома (до 2 мг) сконцентрирована в коже, а также в костях и мышцах. С возрастом содержание хрома в организме, в отличие от других микроэлементов, прогрессивно снижается.

Установлено значение для нормального обмена веществ и жизнедеятельности организма марганца, молибдена, кобальта и таких условно незаменимых микроэлементов, как кремний, ванадий, стронций, бор, никель. Содержание этих микроэлементов в пищевых продуктах, как правило, достаточное для обеспечения потребности организма. В связи с этим у человека (в отличие от некоторых животных, в том числе экспериментальных) практически не встречаются заболевания, обусловленные дефицитом этих микроэлементов.

это химические вещества, находящиеся в тканях организма человека в концентрациях 1: 100000 и меньше . К микроэлементам относят также химические элементы, в низких концентрациях содержащиеся в воде и почве. Некоторые микроэлементы абсолютно необходимы для важнейших процессов жизнедеятельности организма человека, а также для нормального протекания многих метаболических процессов. Микроэлементы входящие в состав организма называют биогенными.

Физиолого-гигиеническая оценка основных микроэлементов

Микроэлемент Физиологическая роль и биологическое действие;
роль в патологии человека
Алюминий Способствует развитию и регенерации эпителия и костей;
активизирует пищеварительные железы и ферменты
Бром Регулирует деятельность нервной системы;
воздействует на половые железы и щитовидную железу .
Чрезмерные накопления вызывают кожные заболевания и угнетение ЦНС
Железо Участвует в дыхании, кроветворении, иммунитете , окислительно-восстановительныхреакциях;
при нарушении обмена развиваются железодефицитные анемии, гемосидероз и гемохромотоз
Йод Необходим для функционировании щитовидной железы;
недостаток вызывает эндемический зоб
Кобальт Стимулирует кроветворение;
участвует в синтезе белков, углеводном обмене
Марганец Влияет на скелет, иммунитет, кроветворение, тканевое дыхание;
его недостаток вызывает истощение, задержку роста и развития скелета
Медь Способствует росту и развитию, участвует в кроветворении, иммунных реакциях, тканевом дыхании
Молибден Входит в состав ферментов, влияет на рост, избыток вызывает молибденоз
Цинк Участвует в кроветворении, деятельности желез внутренней секреции; при недостатке – задержка роста

К биогенным элементам относят кислород, углерод, водород, натрий, калий, кальций, фосфор, серу, хлор, марганец, железо, цинк, медь, йод, фтор, молибден, кобальт, ванадий, селен.


Основные пути поступления, содержание в пище и суточная потребность в основных микроэлементах
Микроэлемент Источники поступления с пищей Содержание в пище, мг
Алюминий Хлеб 20-100
Бром Хлеб, молоко, бобовые 0,4-1,0
Железо Фасоль, греча, печень , мясо, овощи, фрукты, хлеб 15-40
Йод Молоко, овощи, мясо, яйца, морепродукты 0,04-0,2
Кобальт Молоко, хлеб, овощи, говяжья печень, бобовые 0,01-0,1
Марганец Хлеб, овощи, печень, почки 4-36
Медь Хлеб, печень, фрукты, картофель, орехи, грибы, бобы сои, кофе, листья чая 2-10
Молибден Хлеб, бобовые. Печень, почки 0,1-0,6
Фтор Вода, овощи, молоко 0,4-1,8
Цинк Хлеб, мясо, овощи 6-30

Основными источниками микроэлементов для человека служат пищевые продукты растительного и животного происхождения. Питьевая вода лишь на 1-10% покрывает суточную потребность в таких микроэлементах, как цинк, медь, йод, марганец, кобальт, молибден. Содержание различных микроэлементов в пище зависит от геохимических условий местности, в которой были получены пищевые продукты. С возрастом содержание многих микроэлементов (алюминий, хром, хлор, фтор) в тканях человека увеличивается.

Суточная потребность взрослого человека в минеральных веществах в мг (по Покровскому В.А.)

Кальций 800-1000
Фосфор 1000-1500
Натрий 4000-6000
Калий 2500-5000
Хлориды 5000-7000
Магний 300-500
Железо 15-40
Цинк 10-15
Марганец 5-10
Хром 2-2,5
Медь 2
Кобальт 0,1-0,2
Молибден 0,5
Селен 0,5
Фториды 0,5-1,0
Йодиды 0,1-0,2

Натрий – основной микроэлемент, поддерживающий осмотическое давление крови, лимфы, тканевых жидкостей. Человек потребляет его в виде хлористого натрия (поваренной соли) в количестве 6-12 г/сутки; при тренировках в условиях высоких температур, приводящих к выделению большого количества пота и потере натрия, суточная потребность возрастает до 30-35г.


Кальций входит в состав костей, зубов, ионы кальция принимают участие в процессах свертываемости крови, он играет важную роль в обеспечении функции нервно-мышечной возбудимости. Основные продукты, содержащие кальций: молоко, молочные продукты, капуста, шпинат.

Фосфор - с его помощью строится мышечная и нервная ткани. АТФ и КФ необходимы для мышечного сокращения. Основные пищевые источники фосфора рыба и мясо.

Калий , будучи в составе внутриклеточной жидкости, играет важную роль в Na/К насосе мышечного сокращения, участвуя в процессах деполяризации и реполяризации мембран мышечных волокон. Он необходим для поддержания осмотического равновесия между внутриклеточной и внеклеточной жидкостями. Недостаточность калия может проявляться в нарушениях процесса реполяризации в мышце сердца , нарушении сердечного ритма, задержке жидкости в тканях. При обильном потоотделении потери калия значительно возрастают. Основные источники калия: картофель, курага, молоко, яйца, овощи, фрукты, Организм хорошо усваивает калий из овощных и фруктовых соков, компотов, овощных супов, и в меньшей степени из минеральной воды и химических препаратов.

Железо играет важную роль в процессах кроветворения и транспорта кислорода с кровью, входя в состав гемоглобина. Основные источники железа: печень, яйца. Яблоки, шпинат. В пищевых продуктах содержание железа всегда должно быть в несколько раз больше необходимого количества, так как оно плохо усваивается из желудочно-кишечного тракта человека. При недостатке железа снижается количество гемоглобина в эритроцитах, развивается анемия, уменьшается кислородная емкость крови, снижается физическая работоспособность.

Йод входит в состав гормона щитовидной железы, регулирующей обменные процессы. Основные источники йода: мясо, морепродукты свежие, молоко, яйца.

Фтор содержится в основном в костной ткани. Основные пищевые источники: питьевая вода и продукты.

Вода. Суточная потребность 30-40мл/кг веса тела. Потребность в воде возрастает при употреблении жирной, концентрированной, соленой острой пищи, во время тренировки рекомендуется полоскать рот и пить небольшими порциями, чтобы не перегружать сердечно-сосудистую систему и почки.

Витамины это различные по химическому составу органические соединения, необходимые организму для образования ферментов . Они делятся на 2 группы: жиро- и водорастворимые.

Растворимые в воде – это С, РР, витамины группы В.
Растворимые в жирах – А, Д, Е, К.
Основным источником жирорастворимых витаминов служат овощи и фрукты.
Витамины участвуют во всех реакциях жизнедеятельности организма


Источники и функции основных витаминов, необходимых человеку
Название витамина Основные источники Функции Признаки недостаточности
А ретинол Молоко, морковь, печень, шпинат, кресс-салат Рост и формирование эпителиальных тканей Образование зрительного пигмента и темновой адаптации; Сухая кожа, сухость роговицы, ухудшение темновой адаптации
Д кальциферол

Жир из печени трески, яичный желток, маргарин, молоко; Образуется в коже при воздействии солнечного света на липиды

Регулирует всасывание кальция в пищеварительном тракте и связывает кальций в костях; Способствует образованию фтора Рахит – нарушение кальцификации костей. Остеомаляция – костные боли и спонтанные переломы
Е токоферол Зародыши пшеницы, ржаная мука, печень, овощи зеленые Функциональная активность мышц, половой системы, препятствует гемолизу эритроцитов Выкидыши, бесплодие, атрофия мышц, анемия, связанная с гемолизом эритроцитов
К филлохинон Шпинат, кочанная капуста, брюссельская капуста, синтезируется микрофлорой кишечника Участвует на конечной стадии синтеза протромбина в печени, являясь незаменимым фактором свертывания крови Замедляется свертывание крови. При большом дефиците афибриногенемия
В1 тиамин Зародыши пшеницы или риса, дрожжи, непросеянная мука, печень, почки, сердце Участвует в качестве кофермента декарбоксилаз в химических реакциях тканевого дыхания Бери-бери – поражение нервной системы, мышцы становятся слабыми и болезненными, параличи, сердечная недостаточность, отеки, замедление роста у детей
В6 пиридоксин Яйца, печень, почки, мука грубого помола, свежие овощи Участвует как кофермент в обмене аминокислот и жирных кислот
В5 пантотеновая кислота Широко распространен во всех пищевых продуктах Входит в состав кофермента А, молекула которого активирует карбоновые кислоты в клеточном метаболизме Нарушение нервно-мышечной координации. Утомляемость , мышечные судороги
В3(РР) никотиновая кислота Мясо, хлеб грубого помола, дрожжи, печень Незаменимый компонент коферментов НАД и НАДФ, играющих роль акцептора водорода в составе ряда дегидрогеназ. Входит в состав кофермента А Пеллагра. Фотодерматиты. Сыпь. Диаррея.
Вс,В,9 (М) фолиевая кислота Печень, белая рыба, зеленые овощи Участвует в синтезе нуклеопротеинов и в образовании эритроцитов Анемия
В12 цианкобаламин Мясо, молоко, яйца, рыба, сыр Участвует в синтезе РНК. Предупреждает развитие пернициозной анемии Пернициозная анемия
Н биотин Дрожжи, печень, почки, яичный белок, синтезируется микрофлорой кишечника Играет роль кофермента в ряде реакций карбоксилирования. Участвует в синтезе белка и в трансаминирования Дерматиты. Мышечные боли.
С аскорбиновая кислота Цитрусовые, зеленые овощи, картофель, томаты, черная смородина, шиповник Участвует в метаболизме соединительной ткани и в образовании здоровой кожи. Необходим для синтеза коллагеновых волокон. Сокращает выработку свободных радикалов. Цинга. Десны становятся слабыми и кровоточат. Не заживают раны. Анемия. Сердечная недостаточность. Ушибы, гематомы. Частые инфекционные заболевания
В2 рибофлавин Бананы, ветчина, овощные смеси, зародыши пшеницы Способствует улучшению получения энергии из пищи. Поддерживает здоровыми слизистые оболочки пищеварительного, дыхательного трактов, кровеносной и экскреторной систем. Активизирует действие витамина В6 Трещинки и язвочки в уголках губ. Воспаление языка и губ. Усталость глаз. Зуд и шелушение кожи вокруг носа, рта, мошонки, ушей. Бессонница.
Холин Арахис, соя, овсянка, капуста Поддерживает целостность клеточных мембран Снижает холестрин, уменьшает повреждение печени


Похожие статьи

  • Пирог «Шарлотка» с сушеными яблоками Пирожки с сушеными яблоками

    Пирог с сушёными яблоками был очень популярен в деревнях. Готовили его обычно в конце зимы и весной, когда убранные на хранение свежие яблоки уже кончались. Пирог с сушёными яблоками очень демократичен - в начинку к яблокам можно...

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...