Пигментный эпителий сетчатки (РПЭ). Эпителий пигментный Пигментный эпителий

Хотя в лечении заболеваний сетчатки были достигнуты огромные успехи, макулярная дистрофия до сих пор приводит к снижению зрительных функций у большинства пациентов, кроме того в настоящее время не существует эффективных методов лечения «сухой» формы ВМД.

Высказывалось предположение, что фактором, определяющим низкие зрительные функции после удаления хориоидальных неоваскулярных мембран (ХНВМ) при макулярной дистрофии, является атрофия субфовеальных хориокапилляров. Опубликованы данные о том, что область атрофии может продолжать увеличиваться в течение года после оперативного лечения. Стимулировать атрофию хориокапилляров может отсутствие пигментного эпителия сетчатки (ПЭС) в области выполнения хирургического вмешательства.
От степени перфузии в зоне фовеа зависит прогноз зрительных функций, и поэтому она имеет большое значение.

К сожалению, плотно интегрированные клетки пигментного эпителия сетчатки (ПЭС) удаляются вместе с субфовеальной неоваскулярной мембраной во время субмакулярных хирургических вмешательств по поводу ВМД. В многочисленных клинических исследованиях было показано, что удаление пигментного эпителия сетчатки (ПЭС) приводит к атрофии хориокапилляров. Хотя частичная регенерация пигментного эпителия сетчатки (ПЭС) может происходить в некоторых зонах, в других развивается атрофия хориокапилляров и, как следствие, повреждение фоторецепторов.

Если бы во время субмакулярного хирургического вмешательства была возможность имплантировать новые клетки пигментного эпителия, вероятно, это предотвращало бы развитие неизбежной атрофии или, по крайней мере, сводило ее к минимуму.

Нетрудно представить, какие проблемы будут сопутствовать трансплантации клеток пигментного эпителия сетчатки (ПЭС). Сложность заключается в необходимости трансплантировать жизнеспособные клетки с сохраненными функциями, пожизненно проводить иммуносупрессивную терапию для предотвращения реакции отторжения, а также в обеспечении прилегания жизнеспособных хориокапилляров и клеток пигментного эпителия сетчатки (ПЭС) к оболочке Бруха.

На протяжении более 25 лет ученые исследовали эти и многие другие сложности, касающиеся трансплантации пигментного эпителия сетчатки (ПЭС). Сообщения об этих исследованиях в СМИ вызвали живой интерес пациентов, и поэтому очень важно, чтобы врач был компетентен в этой области, чтобы иметь возможность эффективно консультировать своих пациентов.

В 1975 г. ученые обнаружили, что введенные в витреальную полость в качестве аутотрансплантатов клетки пигментного эпителия сетчатки (ПЭС) подверглись метаплазии. Первоначально они трансформировались в макрофаги, а затем в веретенообразные клетки, продуцирующие коллаген.

В 1989 г. была описана методика трансплантации через плоскую часть цилиарного тела аутогенных клеток пигментного эпителия сетчатки (ПЭС), полученных при выполнении периферической хориоретинальной биопсии, чтобы подготовить оболочку Бруха к пересадке на задний полюс того же глаза.

В 1991 г. Peyman описал методику трансплантации клеток пигментного эпителия (ПЭС), которую он использовал для лечения двух пациентов с обширными субфовеальными рубцами вследствие макулярной дистрофии. Его методика заключалась в препарировании большого лоскута сетчатки, охватывающего макулярную зону и сосудистые аркады, удалении субмакулярного рубца с последующей заменой клеток пигментного эпителия сетчатки (ПЭС) аутогенным трансплантатом на ножке или гомологичными клетками пигментного эпителия сетчатки (ПЭС) и оболочкой Бруха. У одного пациента, у которого прижилась ножка трансплантата, было отмечено повышение остроты зрения с уровня счета пальцев до 0,05 в течение 14 мес. У другого пациента гомологичный трансплантат инкапсулировался без какого-либо улучшения зрительных функций.

В 1992 г. японские ученые сообщили результаты гистологического исследования трансплантированных клеток пигментного эпителия сетчатки (ПЭС) у новозеландских белых кроликов. Ученые обнаружили, что на первой неделе трансплантированные клетки формируют монослой. В течение 3 нед. на пересаженных клетках формируются апикальные микроворсинки, а также плотное прилегание к соседним клеткам.

Возникающий контакт клеток с оболочкой Бруха, предположительно, обеспечивается хорошо развитой складчатостью базального слоя мембраны. Результаты исследования показали функциональную состоятельность трансплантированных клеток пигментного эпителия сетчатки (ПЭС). В том же году группа исследователей из RCS (Royal College of Surgeons - Королевской коллегии хирургов) сообщила, что трансплантация клеток ПЭС приводит к стабилизации сосудистой сети сетчатки и предотвращению развития неоваскуляризаци у лабораторных крыс.

В другом исследовании было показано, что трансплантация нормальных клеток ПЭС лабораторным крысам приводит к регрессу патологических изменений в фоторецепторах, которые наблюдались до ее выполнения.

В 1994 г. группа шведских ученых во главе с Algvere опубликовала данные о результатах трансплантации эмбрионального пигментного эпителия сетчатки (ПЭС), полученного из Колумбийского университета, пациентам с экссудативной («влажной») формой ВМД. Трансплантат был помещен под нейросенсорную сетчатку после удаления субмакулярной неоваскулярной мембраны 5 пациентам с ВМД.

Зрительные функции до операции у всех 5 пациентов был очень низкие. Осложнения хирургического вмешательства включали кистозный макулярный отек (КМО) и целлофановую макулопатию. Данные микропериметрии показали, что все 5 пациентов были в состоянии зафиксировать взгляд областью, где была выполнена трансплантация, сразу после операции, однако через несколько месяцев в этой области сформировалась абсолютная скотома.

Нет доказательств того, что пересаженные клетки сохранили жизнеспособность в субретинальном пространстве. Следует отметить, что этим пациентам не проводилась какая-либо иммуносупрессивная терапия.

Несмотря на определенный прогресс в области трансплантации пигментного эпителия сетчатки (ПЭС), проблема реакции отторжения сохраняет свою актуальность и продолжает изучаться. В 1997 г. группа Algvere опубликовала данные еще одного исследования, в котором сравнивались результаты трансплантации эмбриональных клеток пигментного эпителия сетчатки (ПЭС) (13-20 нед. гестации) в субретинальное пространство 5 пациентам с фиброваскулярной мембраной и 4 пациентам с атрофической формой возрастной макулярной дистрофии (ВМД).

У пациентов с дисковидным поражением в течение 6 мес. произошло отторжение всех трансплантатов. У пациентов с неэкссудативной формой заболевания 3 из 4 трансплантатов незначительно изменили форму или размер через 12 мес. после процедуры. Острота зрения у этих пациентов оставалась стабильной. Авторы пришли к выводу, что человеческий аллотрансплантат пигментного эпителия сетчатки (ПЭС) не всегда отторгается при помещении его в субретинальное пространство и что неповрежденный гематоретинальный барьер, скорее всего, препятствует его отторжению. Более поздние исследования показали медленно развивающееся, но значительное влияние иммунной системы на субретинальное пространство, поэтому ученые предостерегают клинических исследователей об опасности игнорирования иммунного ответа в субретинальном пространстве.

Последней разработкой в области трансплантации пигментного эпителия сетчатки (ПЭС) является котрансплантация интактных листков эмбриональной сетчатки с ПЭС. Ученые из Луисвиллского университета (США) выполняли котрансплантацию в субретинальное пространство лабораторным крысам. Через 6-7 нед. после операции пересаженные фоторецепторы при поддержке котрансплантированных клеток пигментного эпителия сетчатки (ПЭС) сформировали полностью организованные параллельные слои в субретинальном пространстве. Ученые пришли к выводу, что подобная трансплантация имеет потенциальное значение для лечения пациентов с заболеваниями сетчатки с повреждением фоторецепторов и пигментного эпителия сетчатки (ПЭС).

І. Строение зрительных путей человека

1. Сетчатка

Сетчатая оболочка (retina) состоит из разнообразных клеточных элементов, которые в соответствии с их функциональными и морфологическими особенностями образуют четко выраженные слои, хорошо определяемые при световой микроскопии:


1. Пигментный эпителий
2. Слой фоторецепторов (палочек и колбочек)
3. Наружная пограничная мембрана
4. Наружный ядерный слой
5. Наружный плексиформный (сетчатый) слой
6. Внутренний ядерный слой
7. Внутренний плексиформный (сетчатый) слой
8. Слой ганглиозных клеток
9. Слой нервных волокон
10. Внутренняя пограничная мембрана

Функционально и по происхождению в сетчатке можно выделить две части – пигментный эпителий и сенсорную часть , которая непосредственно осуществляет процесс фоторецепции.

Пигментный эпителий сетчатки (пигметная часть сетчатки - pars pigmentosa) – самый наружный ее слой, прилежащий непосредственно к сосудистой оболочке и отделенный от нее пограничной мембраной Бруха. Слой пигментного эпителия простирается в виде непрерывной коричневой пластинки от зрительного нерва до зубчатой линии. Впереди он переходит на ресничное тело в виде его пигментного эпителия.


Рис. 1. Слои и клеточные элементы сетчатой оболочки

За слоем пигментного эпителия располагается сенсорная часть сетчатки, выстилающая глазное яблоко изнутри и представляющая собой тонкую прозрачную оболочку, содержащую чувствительные к свету клетки, которые и превращают световую энергию в нервные импульсы.

В сенсорной сетчатке самым наружным слоем, прилежащим к слою пигментного эпителия, является нейроэпителиальный светочувствительный слой (stratum neuroepitheliale; photosensorium) , состоящий из двух видов фоторецепторных клеток – палочек и колбочек. Такое расположение своточувствительного слоя в глазу человека означает, что для достижения фоторецепторов свет должен пройти путь не только через прозрачные среды глаза – роговую оболочку, хрусталик и стекловидное тело, но и через всю толщу сетчатой оболочки. Подобный путь прохождения света характерен для так называемого инвертированного глаза (Рис.1). Прямое попадание света на рецепторную клетку встречается у насекомых (фасеточный глаз) (Рис.2).

Фоторецепторные клетки превращают свет в нервный импульс, который далее по цепочке нейронов передается в зрительные центры коры головного мозга, где и происходит восприятие и переработка зрительной информации.

1.1. Пигментный эпителий сетчатки

Пигментный эпителий сетчатки выполняет разнообразные функции. Первоначально предполагали, что пигментный эпителий является просто черным фоном, снижающим рассеивание света в процессе фоторецепции. В конце XIX в. было установлено, что отделение сенсорной части сетчатки от пигментного эпителия приводит к потере зрения. Это исследование позволило предположить важную роль пигментного эпителия в фоторецепции. В дальнейшем было установлено наличие взаимодействия клеток пигментного эпителия с фоторецепторами.

Пигментный эпителий сетчатки выполняет многочисленные функции:
– способствует формированию фоторецепторов в эмбриональном развитии, запуская этот процесс;
– обеспечивает функционирование гемато-ретинального барьера;
– поддерживает постоянство среды между пигментным эпителием и фоторецепторами;
– поддерживает структуру контакта между наружными сегментами фоторецепторных клеток и клетками пигментного эпителия;
– обеспечивает активный избирательный транспорт метаболитов между сетчаткой и увеальным трактом;
– участвует в метаболизме витамина А;
– осуществляет фагоцитоз наружных сегментов фоторецепторов;
– выполняет оптические функции за счет поглощения световой энергии гранулами меланина;
– осуществляет синтез гликозаминогликанов, окружающих наружные сегменты фоторецепторов.

Функции пигментного эпителия сетчатки (по Zinn, Benjamin-Henkind, 1979)

Физические

  • Выполняет барьерные функции по отношению сенсорной части сетчатки, не пропуская крупные молекулы со стороны хориоидеи.
  • Обеспечивает адгезию сенсорной части сетчатки с пигментным эпителием посредством транспорта специфических жидких компонентов и взаимодействия микроворсинок клеток пигментного эпителия с наружными члениками фоторецепторов и синтеза компонентов межклеточного матрикса.

Оптические

  • Абсорбирует световую энергию (гранулы меланина), «отсекая» рассеянный свет и повышая при этом разрешающую способность зрительной системы.
  • Является барьером на пути проникновения световой энергии через склеру, повышая разрешающую способность зрительной системы.

Метаболические

  • Фагоцитирует наружные членики палочек и колбочек
  • Переваривает структурные элементы фагоцитированных наружных члеников палочек и колбочек (гетерофагия) благодаря наличию хорошо развитой лизосомной системы.
  • Участвует в метаболизме витамина А – эстерификация, изомеризация, хранение и транспорт
  • Участвует в синтезе межклеточного матрикса: апикального компонента межфоторецепторного матрикса; базального компонента базальной мембраны.
  • Содержит ферменты для синтеза зрительного хроматофора 11-цис-ретиналя, гранул меланина (тирозиназы), ферментов детоксикации (цитохром Р450) и др.
  • Осуществляет транспорт большого количества метаболитов к клеткам сетчатки и от них в направлении сосудистой оболочки

Транспортные

  • Участвует в активном транспорте ионов HCO3, определяющих выведение жидкости из субретинального пространства
  • Обеспечивает работу натрий-калиевого насоса, который выполняет перенос солей через клетки пигментного эпителия. Перенос воды осуществляется пассивно
  • Образует насосную систему, обеспечивающую отток большого объема воды из стекловидного тела

Отростки клеток пигментного эпителия, в которых содержатся поглощающие световую энергию гранулы меланина, окутывают наружные сегменты фоторорецепторных клеток, за счет чего происходит световая изоляция каждого фоторецептора. Это обеспечивает четкую топографическую регистрацию световой энергии в наружных сегментах фоторецепторов. При возрастании освещенности глазного яблока зерна меланина мигрируют в отростки клеток пигментного эпителия. При этом степень фотоизоляции усиливается.

Пигментный эпителий сетчатки расположен между сосудистой оболочкой и сенсорной частью сетчатки. Гистологически он представляет собой один слой интенсивно пигментированных уплощенных клеток, имеющих гексагональную форму, плотно прилежащих друг к другу. В пигментном эпителии сетчатки человека насчитывают около 4-6 млн. клеток.

Размеры клеток различаются в зависимости от их расположения: в фовеолярной области области они выше (14-16 мкм по высоте) и уже (10-14 мкм по ширине), по сравнению с более уплощенными и широкими клетками в области зубчатой линии (60 мкм в ширину). С возрастом пигментные клетки в области желтого пятна увеличиваются в высоте и уменьшаются в ширине. Обратная закономерность обнаруживается по периферии сетчатки.

Клетки пигментного эпителия сетчатки подобно другим эпителиальным клеткам имеют апикальную и базальную части. Базальная часть обращена к сосудистой оболочке и непосредственно прилежит к стекловидной пластинке (lamina vitrea) – мембране Бруха (lamina basalis (Bruch) ), которая отделяет ее от хориокапиллярного слоя сосудистой оболочки.
На апикальной поверхности клеток определяется множество микроворсинок длиной от 3 до 5-7 мкм, которые проникают в пространство между наружными сегментами фоторецепторов и окутывают их. Окончания наружных сегментов палочек глубоко внедрены в углубления в апикальной мембране. Микроворсинки значительно увеличивают площадь контакта клеток пигментного эпителия с фоторецепторами, способствуя тем самым высокому уровню метаболизма за счет возрастания интенсивности доставки питательных веществ сетчатке из хориокапиллярного слоя сосудистой оболочки и выведения из сетчатки продуктов метаболизма .

Между цитоплазматической мембраной микроворсинок клеток пигментного эпителия и мембраной фоторецепторов нет никаких специализированных соединений. Там обнаруживается щелевидное пространство, заполненное так называемой «цементирующей» субстанцией, имеющей сложный химический состав. Эту субстанцию называют интерфоторецепторным матриксом . Он синтезируется клетками пигментного эпителия и состоит из хондроитинсульфата (60%), сиаловой кислоты (25%) и гиалуроновой кислоты (15%). Между протеогликанами интерфоторецепторного матрикса и наружными сегментами колбочек выявлено довольно сложное пространственное взаимодействие, которое и обеспечивает достаточно плотный контакт между пигментным эпителием и сетчаткой.

Между собой клетки пигментного эпителия плотно соединены при помощи зон замыкания, десмосомы и щелевых контактов. Наличие этих контактов делает невозможным прохождение метаболитов вдоль межклеточного вещества. Этот перенос происходит только через цитоплазму клетки активным путем. Именно подобный плотный межклеточный контакт обеспечивает возможность функционирования гемато-ретинального барьера (Рис. 3).

Цитоплазма клеток пигментного эпителия содержит множество гранул меланина и органеллы, связанные с его синтезом, в том числе комплекс гранулярного и негранулярного эндоплазматического ретикулума, комплекс Гольджи, премеланосомы и меланосомы, митохондрии. Во всех частях цитоплазмы располагаются лизосомы. Основной их функцией является ферментативное расщепление фагоцитируемых фрагментов наружных члеников фоторецепторов.
Фагоцитарная активность клеток пигментного эпителия сетчатки является одной их основных функций . Поэтому их цитоплазма содержит фаголизосомы, которые образуются в результате слияния поглощенных наружных члеников фоторецепторов с первичной лизосомой . Клетки пигментного эпителия фагоцитируют до 10% наружных члеников фоторецепторов ежедневно. Это является прямым доказательством постоянной регенерации последних.

Процесс фагоцитоза и лизиса сегментов наружных члеников фоторецепторов происходит довольно быстро. Так например, одна клетка пигментного эпителия кролика за сутки лизирует от 2000 дисков в парафовеолярной области сетчатки до 4000 – по ее периферии .
Процесс разрушения наружных члеников фоторецепторов и их утилизация являются адаптивным механизмом, способствующим поддержанию структурной и функциональной целостности фоторецепторного аппарата. Конечным продуктом этого процесса являются гранулы липофусцина, которые накапливаются в этих клетках и придают им гранулярный вид.

Липофусцин возникает в результате фагоцитоза наружных сегментов фоторецепторов с последующим перекисным окислением липидной фракции этих фрагментов и накопления в лизосомах стареющих клеток нелизирующихся агрегатов белка и липидов. В этом процессе участвует коротковолновой спектр световой энергии. Это пигмент имеет естественную желтовато-зеленую флюоресценцию.
Кроме того, в цитоплазме клеток пигментного эпителия содержатся гранулы меланина (меланосомы), пиносомы, пластинчатые тела, актиновые микрофиламенты и микротрубочки.

Литература

1. Clark V.M. The cell biology of the retinal pigment epithelium. – In: Adler R., Farber D. (eds): The retina-A model for cell biology. Part II. – Orlando FL Academic Press, 1986. – P.129-168.
2. Chaitin M.H., Hall M.O. Defective ingestion of rod outer segment by cultured dystrophic rat pigment epithelial cells // Invest Ophthalmol Vis Sci. – 1983. – Vol.24. – P.812-822.
3. Philp N., Bernstein M.H. Phagocytosis by retinal pigment epithelium explants in culture // Exp Eye Res. – 1981. – Vol.33. – P.47-58.
4. Ishikawa T., Yamada E. The degradation of the photoreceptor outer segment within the pigment epithelial cell of the rat retina // J Electron Microsc. – 1970. – Vol.19. – P.85-92.
5. Young R.W. Shedding of discs from rod puter segments in the Rhesus monkey // J Ultrastruct Res. – 1971. – Vol.34. – P.190-202.

Пигментный эпителий сетчатки обеспечивает множество функций. В начале 19 века исследователи считали, что пигментный эпителий - все лишь непроницаемый фон, предотвращающий рассеивание света при фоторецепции. Спустя 80 лет выяснили, что отделение сенсорной части сетчатки от пигментного эпителия вызывает необратимую потерю зрения. Благодаря этой находке и была установлена значимость пигментного эпителия для процесса фоторецепции. Исследования нашего времени подтвердили взаимосвязь фоторецепторов и клеток пигментного эпителия.

Назначение

Стоит рассмотреть ряд основных функций пигментного эпителия сетчатки

  1. Эпителий останавливает большие молекулы со стороны хориоидеи;
  2. Эпителий отвечает за связи сенсорной части сетчатки с пигментным эпителием;
  3. Абсорбцирует световой поток, отфильтровывая рассеянный свет и увеличивая разрешающую способность глаз;
  4. Предотвращает прохождение света энергии через склеру;
  5. Впитывает энергию различных излучателей, вызывая фототермический эффект;
  6. Захватывает внешние членики палочек и колбочек;
  7. В процессе гетерофагии перерабатывает элементы структуры указанных палочек и колбочек;
  8. Обеспечивает процессы превращения, хранения и перемещения витамина А;
  9. Синтезирует межклеточный матрикс;
  10. Хранит составляющие для выработки зрительного хроматофора 11-cis Retinal;
  11. Проводит метаболиты к зрительным клеткам и от них к сосудистой оболочке;
  12. Перемещает ионы НСО 3,отвечающие за выведение жидкости из субретинального пространства;
  13. Выводит значительный объем жидкости из стекловидного тела;
  14. Синтезирует гликозаминогликаны, которые окружают внешние сегменты фоторецепторов.

Топографическая регистрация световой энергии обеспечивается тем, что меланиновые гранулы абсорбируют энергию света посредством внешних сегментов фоторецепторов. Клетки фоторецепторов окружают отростки клеток пигментного эпителия, которые содержат меланиновые зерна. Благодаря этому каждый рецептор надежно изолирован. По мере усиления внешнего освещения зерна меланина смещаются в клеточные отростки пигментного эпителия, усиливая степень изоляции фоторецепторов.

Рецепторы, которые находятся на базальной и латеральной поверхностях эпителиальных клеток, отвечают за поглощение и перемещение витамин А внутри глаза.

Причиной развития многих заболеваний (в частности - серозной хориоретинопатии, дистрофии сетчатки и возрастной макулопатии) является как раз дисфункция пигментного эпителия. При диагностике аномалий данные изменения хорошо выражены офтальмоскопически.

Сведения из анатомии

Пигментный эпителий находится между сенсорной частью сетчатки и хориокапиллярным слоем сосудистой оболочки. По своему строению это одинарный слой пигментированных клеток шестиугольной формы. Размеры клеток могут различаться в зависимости от локализации. Клетки пигментного эпителия сетчатки имеют апикальную и базальную части, они скрепены с апикальной стороны органоидами. Базальная мембрана прилегает к ним с базальной стороны.

Ткань, находящая между хориoкапиллярным слоем сосудистой оболочки и пигментным эпителием называется мембраной Бруха. Часто в ее области при помощи офтальмоскопии можно выявить друзы, причиной которым - процессы старения или заболеваний.

Мембрана Бруха обеспечивает многие функции - транспорт питательных веществ и воды и функции фильтра. Работа мемебраны нарушается из-за дегенерации пигментного эпителия и макулярной области в ходе естественного старения.

Интерфоторецепторный матрикс - это пространство с сложным химическим составом, находящееся между мембраной фоторецепторов и цитоплазматической мембраной микроворсинок. Вырабатывется это вещество клетками пигментного эпителия. Интерфоторецепторный матрикс явялется часью механизмов, обеспечивающих обмен веществ в сетчатке глаз. Также ои помогает процессам фагоцитоза наружных фоторецепторов. Отслойка сетчатки - типичный случай разрушения структуры матрикса.

В разных участках пигментного эпителиоцита цитоплазма имеет отличающееся ультраструктурное строение. Именно по этой причине цитоплазму клетки условно разделяют на 3 зоны.

Поскольку фагоцитарная активность клеток пигментного эпителия является одной из основных функций, их цитоплазма содержит фаголизосомы.

Процесс фагоцитоза и лизиса сегментов наружных члеников фоторецепторов происходит довольно быстро. Одна клетка пигментного эпителия кролика в сутки подвергает лизису 2000 дисков в парафовеолярной области сетчатки, 3500 дисков в перифовеолярной области и почти 4000 по периферии сетчатки. Отмечено, что при интенсивном освещении количество фагосом увеличивается. Клетки пигментного эпителия отщепляют наружные членики колбочек таким же образом, как и палочек, но более интенсивно после прекращения освещения. Процесс разрушения наружных члеников колбочек и палочек фоторецепторов и их утилизации является адаптивным механизмом, способствующим поддержанию структурной и функциональной целостности фоторецепторного аппарата.

Часто в состав цитоплазмы клеток пигментного эпителия входит липофусцин, так называемый «пигмент старения», находящийся во многих тканях организма и по мере старения только увеличивающийся. Липофусцин образуется при перекисном окислении клеточных компонентов, в частности, липидов. Липофусцин обнаруживается и в пигментном эпителии сетчатки, в клетках заднего полюса. К преклонному возрасту липофусциновые гранулы составляют до 20 % от общего объема эпителиоцитов. Если содержание липофусцина существенно увеличивается к старости, число меланосом при этом наоборот уменьшается. Таким образом, ухудшение зрения с возрастом - вполне закономерный процесс, связанный с изменением баланса химических веществ в структуре глаз.

(Adult Retinal Pigment Epithelial cell line-19). Эта клеточная линия получена в 1955 году от погибшего 19-летнего мужчины, отсюда цифра 19 в названии.

Чтобы клетки на фотографии были хорошо видны, перед съемкой их окрасили иммунофлуоресцентным красителем. Красным цветом светится белок коннексин 43 , это один из мембранных белков, он служит маркером эпителиальных клеток . С его помощью клетки образуют контакты и скрепляются друг с другом, что для клеток эпителия это очень важно, так как они должны образовать защитный слой, который не будет пропускать ничего лишнего. Синим красителем окрашены ядра, а зеленым - микротрубочки , состоящие из белка тубулина класса IIIβ (см. Class III β-tubulin) - это «скелет» клетки (см. картинку дня «Раскрашенный цитоскелет»).

Сетчатка - это структура, состоящая из нескольких слоев нейронов и фоторецепторных клеток, которые обеспечивают нашу способность видеть. Чтобы она правильно функционировала, ей необходима поддержка - питание и защита. Их и обеспечивает специальный слой клеток - пигментный эпителией сетчатки (ПЭС). Это самый наружный слой сетчатки, его клетки расположены между фоторецепторами и сосудистой оболочкой глаза. При нарушении работы ПЭС нарушается также и работа сетчатки, вплоть до полной потери зрения. Один из наиболее часто встречаемых диагнозов нарушения работы ПЭС - возрастная макулярная дистрофия . Для изучения причин развития заболеваний сетчатки и разработки методов их лечения как раз и нужны клеточные культуры пигментного эпителия - не на живом ведь глазу проводить эксперименты!

Клетки пигментного эпителия содержат пигменты меланин (под микроскопом видны черные гранулы внутри клеток). Гранулы меланина поглощают свет, который попал в глаз и не поглотился фоторецепторами, - это позволяет сделать видимое изображение более резким и контрастным. На ярком свету гранулы мигрируют поближе к фоторецепторам, как бы окутывая их. Это нужно для того, чтобы поглотить избыточный рассеянный свет и сделать видимое изображение более четким. В темноте они опускаются на дно клетки (ближе к сосудистой оболочке). На поверхности клетки пигментного эпителия имеют выросты, которыми обхватывают нижние части фоторецепторов. Связываясь с ними, ПЭС выполняют функцию гемато-ретинального барьера , который избирательно пропускает к фоторецепторам питательные вещества из крови и выводит в кровь продукты распада. Кроме того, клетки пигментного эпителия фагоцитируют (то есть откусывают и переваривают) наружные, отработавшие части фоторецепторов и восстанавливают из них зрительный пигмент, чтобы снова запустить его в работу.

В организме ПЭС формируют плотный слой, где каждая клетка принимает форму шестиугольника - такая форма позволяет на минимальной площади уместить максимальное количество объектов (вспомните пчелиные соты). В лабораторных условиях клетки могут разместиться более свободно и принять другую форму - до тех пор, пока их концентрация не станет слишком велика.

Фото © Елена Шафеи, Институт биологии развития имени Н. К. Кольцова РАН. Материал подготовлен вместе с сообществом

При врожденной гипертрофии пигментного эпителия сетчатки речь идет о нарушении формирования этого слоя в период внутриутробной жизни. Проявляется заболевание сгруппированной пигментацией, которая имеет внешнее сходство со следом медведя.

До конца патогенез гипертрофии сетчатки не изучен. Некоторые ученые полагают, что в результате формирования в патологической сетчатке макромеланосом происходит изменение катаболической функции. В результате клетки пигментного эпителия погибают, а на их месте формируются лакуны, или очаги гипогигментации.

Клинические проявления гипертрофии

При врожденной гиперплазии пигментного слоя сетчатки возникает очаговая гиперпигментация. По своей форме очаги гиперпигментации напоминают медвежий след. Окраска этих пятен может быть светло-коричневой или черной. Форма пятен округлая, а края гладкие или фестончатые. Вокруг очагов гиперпигментации можно обнаружить довольно обширную плакоидную область. Лакуны, формирующиеся при гиперплазии, могут носить одиночный или множественный характер. Сгруппированные очаги гиперпигментации (маленькие пучки или скопления) называют следом медведя. Размер этих скоплений может быть с маленький диск, а иногда достигает целого квадранта глазного дна. Типичной локализации для этих патологических изменений не выявлено. Центральная область сетчатки, то есть макула, довольно редко вовлекается в патологический процесс.

Заболевание может протекать бессимптомно. Иногда очаги гиперплазии увеличиваются в размерах или озлокачествляются. При выполнении флуоресцентной ангиографии на ранних стадиях патологий можно рассмотреть крупные сосуды хориоидальной оболочки, которые пересекают лакуны. При этом слой хориокапилляров отсутствует. На всем протяжении гипертрофированного участка можно выявить гипофлуоресценцию.

Диагностика

Световая микроскопия

Слой гипертрофированного пигментного эпителия представляет собой большие пигментные гранулы овальной формы. Фоторецепторы, которые прилежат к этой зоне, подвергаются дистрофии (наружные и внутренние сегменты). Также имеется утоление мембраны Бруха, а в лакунах с гипопигментацией отсутствуют фоторецепторы и пигментные эпителиальные клетки. Сосудистая оболочка при этом заболевании не изменена.

Инструментальные исследования

Во время выполнения флуоресцентной ангиографии в зоне гиперпигментации можно заметить блокаду фоновой флуоресценции хориоидеи. В гипопигментированных лакунах хориоидальный кровоток сохранен. Сеть сосудов, которая покрывает очаг изменения, невидима. Иногда имеются признаки облитерации капилляров, микроаневризм, сосудистых шунтов, отмечается разреженность структур, флуоресцеин может просачиваться.
При исследовании поля зрения могут возникать относительные скотомы, которые увеличиваются с возрастом. ЭОГ и ЭРГ сохраняются в норме.

Дифференциальная диагностика

Следует отличать врожденную гипертрофию пигментного эпителиального слоя сетчатки от меланомы, невуса хориоидеи, меланоцитомы. Также дифференциальную диагностику нужно проводить с реактивной гиперплазией этого слоя сетчатки, которая возникает в результате травмы, кровоизлияния, воспаления или приема токсических веществ.

Лечение

Лечения этого заболевания не проводят.

Прогноз

При отсутствии патологических изменений в зоне макулы снижения остроты зрения не отмечается.



Похожие статьи

  • Пирог «Шарлотка» с сушеными яблоками Пирожки с сушеными яблоками

    Пирог с сушёными яблоками был очень популярен в деревнях. Готовили его обычно в конце зимы и весной, когда убранные на хранение свежие яблоки уже кончались. Пирог с сушёными яблоками очень демократичен - в начинку к яблокам можно...

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...