Построение сечений. §16. Построение сечений многогранников. Метод следов

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.

Треугольник MNP — искомое сечение.

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

Треугольник BKL — искомое сечение.

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

Таким образом, получили все то же сечение MNPT.

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Цель работы:
Развитие пространственных представлений.
Задачи:
1. Познакомить с правилами построения сечений.
2. Выработать навыки построения сечений
тетраэдра и параллелепипеда при различных
случаях задания секущей плоскости.
3. Сформировать умение применять правила
построения сечений при решении задач по
темам «Многогранники».

Для решения многих
геометрических
задач необходимо
строить сечения
многогранников
различными
плоскостями.

Понятие секущей плоскости

Секущей
плоскостью
параллелепипеда
(тетраэдра)
называется любая
плоскость, по обе
стороны от
которой имеются
точки данного
параллелепипеда
(тетраэдра).

Понятие сечения многогранника

Секущая плоскость
пересекает грани
тетраэдра
(параллелепипеда) по
отрезкам.
Многоугольник, сторонами
которого являются данные
отрезки, называется
сечением тетраэдра
(параллелепипеда).

Работа по рисункам

Сколько плоскостей можно провести
через выделенные элементы?
Какие аксиомы и теоремы вы применяли?

Для построения сечения
нужно построить точки
пересечения секущей
плоскости с ребрами и
соединить их отрезками.

Правила построения сечений

1. Соединять можно только две
точки, лежащие в плоскости одной
грани.
2. Секущая плоскость пересекает
параллельные грани по
параллельным отрезкам.

Правила построения сечений

3. Если в плоскости грани отмечена
только одна точка, принадлежащая
плоскости сечения, то надо
построить дополнительную точку.
Для этого необходимо найти точки
пересечения уже построенных
прямых с другими прямыми,
лежащими в тех же гранях.

10. Построение сечений тетраэдра

11.

Тетраэдр имеет 4 грани
В сечениях могут получиться
Треугольники
Четырехугольники

12.

Построить сечение тетраэдра
DABC плоскостью, проходящей
через точки M,N,K
1. Проведем прямую через
точки М и К, т.к. они лежат
в одной грани (АDC).
D
M
AA
N
K
BB
CC
2. Проведем прямую через
точки К и N, т.к. они
лежат в одной грани
(СDB).
3. Аналогично рассуждая,
проводим прямую MN.
4. Треугольник MNK –
искомое сечение.

13. проходящей через точку М параллельно АВС.

D
1. Проведем через точку М
прямую параллельную
ребру AB
2.
М
Р
А
К
С
В
Проведем через точку М
прямую параллельную
ребру AC
3. Проведем прямую через
точки K и P, т.к. они лежат в
одной грани (DBC)
4. Треугольник MPK –
искомое сечение.

14.

Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K.
D
1. Проводим КF.
2. Проводим FE.
3. Продолжим
EF, продолжим AC.
F
4. EF AC =М
5. Проводим
MK.
E
M
AB=L
6.
MK
C
A
7. Проводим EL
L
EFKL – искомое сечение
K
B

15.

Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K
СКакие
какойпрямые
точкой,
лежащей в
можно
Соедините
получившиеся
Какие
точки
можно
сразу
той
же
грани
можно
продолжить,
чтобы
получить
точки,
лежащие
в
одной
соединить?
соединить
полученную
дополнительную
точку?
грани,
назовите
сечение.
дополнительную точку?
D
АС
ЕLFK
FСЕК
иточкой
K,и Е
и FК
F
L
C
M
A
E
K
B

16.

Построить сечение
тетраэдра плоскостью,
проходящей через точки
E, F, K.
D
F
L
C
A
E
K
B
О

17.

Вывод: независимо от способа
построения сечения одинаковые

18. Построение сечений параллелепипеда

19.

Тетраэдр имеет 6 граней
Треугольники
Пятиугольники
В его сечениях могут получиться
Четырехугольники
Шестиугольники

20. Построить сечение параллелепипеда плоскостью проходящей через точку Х параллельно плоскости (ОСВ)

В1
А1
Y
Х
D1
S
В
А
D
Z
1. Проведем через
С1
точку X прямую
параллельную ребру
D1C1
2. Через точку X
прямую
параллельную ребру
D1D
3. Через точку Z прямую
параллельную ребру
С
DC
4. Проведем прямую через
точки S и Y, т.к. они лежат в
одной грани (BB1C1)
XYSZ – искомое сечение

21.

Построить сечение параллелепипеда
плоскостью, проходящей через точки
M,A,D
В1
D1
E
A1
С1
В
А
1. AD
2. MD
3. ME//AD, т.к. (ABC)//(A1B1C1)
4. AE
5. AEMD – искомое сечение
М
D
С

22. Построить сечение параллелепипеда плоскостью, проходящей через точки М, К, Т

N
М
К
R
S
Х
Т

23. Выполните задания самостоятельно

м
т
к
м
Д
к
т
Постройте сечение: а) параллелепипеда;
б) тетраэдра
плоскостью, проходящей через точки М, Т, К.

24. Использованные ресурсы

Соболева Л. И. Построение сечений
Ткачева В. В. Построение сечений
тетраэдра и параллелепипеда
Гобозова Л. В. Задачи на построение
сечений
DVD-диск. Уроки геометрии Кирилла и
Мефодия. 10 класс, 2005
Обучающие и проверочные задания.
Геометрия. 10 класс (Тетрадь)/Алешина
Т.Н. – М.: Интеллект-Центр, 1998

Задачи на построение сечений многогранников занимают значительное место как школьном курсе геометрии для старших классов, так и на экзаменах разного уровня. Решение этого вида задач способствует усвоению аксиом стереометрии, систематизации знаний и умений, развитию пространственного представления и конструктивных навыков. Общеизвестны трудности, возникающие при решении задач на построение сечений.

С самого раннего детства мы сталкиваемся с сечениями. Режем хлеб, колбасу и другие продукты, обстругиваем палочку или карандаш ножом. Секущей плоскостью во всех этих случаях является плоскость ножа. Сечения (срезы кусочков) оказываются различными.

Сечение выпуклого многогранника есть выпуклый многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многоугольника, а стороны- линиями пересечения секущей плоскости с гранями.

Для построения прямой пересечения двух плоскостей достаточно найти две общие точки этих плоскостей и провести через них прямую. Это основано на следующих утверждениях:

1.если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости;

2.если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Как я уже сказал ппостроение сечений многогранников можно осуществлять на основании аксиом стереометрии и теорем о параллельности прямых и плоскостей. Вместе с тем, существуют определенные методы построения плоских сечений многогранников. Наиболее эффективными являются следующие три метода:

Метод следов

Метод внутреннего проектирования

Комбинированный метод.

В изучении геометрии и, в особенности, тех её разделов, где рассматриваются изображения геометрических фигур, изображения геометрических фигур помогают использования компьютерных презентаций. С помощью компьютера многие уроки геометрии становятся более наглядной и динамичной. Аксиомы, теоремы, доказательства, задачи на построения, задачи на построения сечений можно сопровождать последовательными построениями на экране монитора. Сделанные с помощью компьютера чертежи можно сохранять и вставлять их в другие документы.

Хочу показать несколько слайдов по теме: «Построения сечений в геометрических телах»

Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную прямую. Тогда искомая точка является точкой пересечения найденной прямой с данной. Проследим это на следующих слайдах.

Задача 1.

На ребрах тетраэдра DABC отмечены две точки М и N; М GAD, N б DC. Укажите точку пересечения прямой MN с плоскостью основания.

Решение: для того, чтобы найти точку пересечения прямой MN с плоскостью

основания мы продолжим АС и отрезок MN. Отметим точку пересечения этих прямых через X. Точка X принадлежит прямой MN и грани АС, а АС лежит в плоскости основания, значит точка X тоже лежит в плоскости основания. Следовательно, точка X есть точка пересечения прямой MN с плоскостью основания.

Рассмотрим вторую задачу. Немного усложним его.

Задача 2.

Дан тетраэдр DABC точки М и N, где М € DA, N С (DBC). Найти точку пересечения прямой MN с плоскостью ABC .

Решение: точка пересечения прямой MN с плоскостью ABC должна лежать в плоскости, которая содержит прямую MN и в плоскости основания. Продолжим отрезок DN до точки пересечения с ребром DC. Точку пересечения отметим через Е. Продолжим прямую АЕ и MN до точки их пересечения. Отметим X. Точка X принадлежит MN, значит она лежит на плоскости которая содержит прямую MN и X принадлежит АЕ, а АЕ лежит на плоскости ABC. Значит X тоже лежит в плоскости ABC. Следовательно X и есть точка пересечения прямой MN и плоскости ABC.

Усложним задачу. Рассмотрим сечение геометрических фигур плоскостями, проходящими через три данные точки.

Задача 3

На ребрах AC, AD и DB тетраэдра DABC отмечены точки М, N и Р. Построить сечение тетраэдра плоскостью MNP.

Решение: построим прямую, по которой плоскость MNP. Пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезок АВ и NP. Точку пересечения отметим через X, которая и будет второй общей точкой плоскости MNP и ABC. Значит эти плоскости пересекаются по прямой MX . MX пересекает ребро ВС в некоторой точке Е. Так как Е лежит на MX, а MX прямая принадлежащей плоскости MNP, значит РЕ принадлежит MNP. Четырёхугольник MNPE искомое сечение.

Задача 4

Построим сечение прямой призмы АВСА1В1С1 плоскостью проходящей через точки P, Q ,R, где R принадлежит (AA 1C 1C ), Р принадлежит В 1С1,

Q принадлежит АВ

Решение: Все три точки P,Q,R лежат в разных гранях, поэтому построить линию пересечения секущей плоскости с какой- либо гранью призмы мы пока не можем. Найдем точку пересечения PR с ABC. Найдем проекции точек Р и R на плоскость основания PP1 перпендикулярно ВС и RR1 перпендикулярна АС. Прямая P1R1 пересекается с прямой PR в точке X. X точка пересечения прямой PR с плоскостью ABC. Она лежит в искомой плоскости К ив плоскости основания, как и точка Q. XQ- прямая пересекающая К с плоскостью основания. XQ пересекает АС в точке К. Следовательно, KQ отрезок пересечения плоскости Х с гранью ABC. К и R лежат в плоскости Х и в плоскости грани АА1С1С. Проведем прямую KR и точку пересечения с A1Q отметим Е. КЕ является линией пересечения плоскости Х с этой гранью. Найдем линию пересечения плоскости Х с плоскостью граней BB1A1A. КЕ пересекается с А1А в точке У. Прямая QY есть линия пересечения секущей плоскости с плоскостью AA1B1B. FPEKQ- искомое сечение.

ПОСТРОЕНИЕ СЕЧЕНИЙ И РАЗРЕЗОВ НА ЧЕРТЕЖАХ

Формирование чертежа детали производится путем последовательного добавления необходимых проекций, разрезов и сечений. Первоначально создается произвольный вид с указанной пользователем модели, при этом задается ориентация модели, наиболее подходящая для главного вида. Далее по этому и следующим видам создаются необходимые разрезы и сечения.

Главный вид (вид спереди) выбирается таким образом, чтобы он давал наиболее полное представление о формах и размерах детали.

Разрезы на чертежах

В зависимости от положения секущей плоскости различают следующие виды разрезов:

А) горизонтальные, если секущая плоскость располагается параллельно горизонтальной плоскости проекций;

Б) вертикальные, если секущая плоскость перпендикулярна горизонтальной плоскости проекций;

В) наклонные - секущая плоскость наклонена к плоскостям проекций.

Вертикальные разрезы подразделяются на:

· фронтальные - секущая плоскость параллельна фронтальной плоскости проекций;

· профильные - секущая плоскость параллельна профильной плоскости проекций.
В зависимости от числа секущих плоскостей разрезы бывают:

· простые - при одной секущей плоскости (рис.107);

· сложные - при двух и более секущих плоскостях (рис.108)
Стандартом предусмотрены следующие виды Сложных разрезов:

· ступенчатые, когда секущие плоскости располагаются параллельно (рис.108 а) и ломаные - секущие плоскости пересекаются (рис.108 б)

Рис.107 Простой разрез

А) б)

Рис.108 Сложные разрезы

Обозначение разрезов

В случае, когда в простом разрезе секущая плоскость совпадает с плоскостью симметрии предмета, разрез не обозначается (рис.107). Во всех остальных случаях разрезы обозначаются прописными буквами русского алфавита, начиная с буквы А, например А-А.

Положение секущей плоскости на чертеже указывают линией сечения – утолщенной разомкнутой линией. При сложном разрезе штрихи проводят также у перегибов линии сечения. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны находиться на расстоянии 2-3 мм от наружных концов штрихов. С наружной стороны каждой стрелки, указывающей направление взгляда, наносят одну и ту же прописную букву.

Для обозначения разрезов и сечений в системе КОМПАС используется одна и та же кнопка Линия разреза, расположенная на странице Обозначения (рис.109).

Рис.109 Кнопка Линия разреза

Соединение половины вида с половиной разреза

Если вид и разрез представляют собой симметричные фигуры (рис.110), то можно соединять половину вида и половину разреза, разделяя их штрихпунктирой тонкой линией, являющейся осью симметрии. Часть разреза обычно располагают справа от оси симметрии, разделяющей часть вида с частью разреза, или снизу от оси симметрии. Линии невидимого контура на соединяемых частях вида и разреза обычно не показываются. Если с осевой линией, разделяющий вид и разрез, совпадает проекция какой-либо линии, например, ребра гранной фигуры, то вид и разрез разделяются сплошной волнистой линией, проводимой левее оси симметрии, если ребро лежит на внутренней поверхности, или правее, если ребро наружное.

Рис. 110 Соединение части вида и разреза

Построение разрезов

Построение разрезов в системе КОМПАС изучим на примере построения чертежа призмы, задание для которого изображено на рис.111.

Последовательность построения чертежа следующая:

1. По заданным размерам построим твердотельную модель призмы (рис.109 б). Сохраним модель в памяти компьютера в файле с именем «Призма».

Рис.112 Панель Линии

3. Для построения профильного разреза (рис.113) начертим линию разреза А-А на главном виде с помощью кнопки Линия разреза.


Рис.113 Построение профильного разреза

Направление взгляда и текст обозначения можно выбрать на панели управления командой внизу экрана (рис.114). Завершается построение линии разреза нажатием на кнопку Создать объект.

Рис.114 Панель управления командой построения разрезов и сечений

4. На панели Ассоциативные виды (рис.115) выберем кнопку Линия разреза, затем появившейся на экране ловушкой укажем линию разреза. Если все сделано верно (линия разреза должна быть обязательно построена в активном виде), то линия разреза окрасится в красный цвет. После указания линии разреза А-А на экране появится фантом изображения в виде габаритного прямоугольника.

Рис.115 Панель Ассоциативные виды

С помощью переключателя Разрез/сечение на Панели свойств выбирается тип изображения – Разрез (рис.116) и масштаб отображаемого разреза.

Рис.116 Панель управления командой построения разрезов и сечений

Профильный разрез построится автоматически в проекционной связи и со стандартным обозначением. При необходимости проекционную связь можно отключать переключателем Проекционная связь (рис.116). Для настройки параметров штриховки, которая будет использована в создаваемом разрезе (сечении) используется элементы управления на вкладке Штриховка.

Рис.117 Построение горизонтального разреза Б-Б и сечения В-В

Если выбранная секущая плоскость при построении разреза совпадает с плоскостью симметрии детали, то в соответствии со стандартом такой разрез не обозначается. Но если просто стереть обозначение разреза, то из-за того, что вид и разрез в памяти компьютера связаны между собой, то сотрется и весь разрез. Поэтому для того, чтобы удалить обозначение, вначале следует разрушить связь вида и разреза. Для этого щелчком левой кнопки мыши выделяется разрез, а затем щелчком правой кнопки мыши вызывается контекстное меню, из которого выбирается пункт Разрушить вид (рис.97). Теперь обозначение разреза можно удалить.

5. Для построения горизонтального разреза проведем через нижнюю плоскость отверстия на виде спереди линию разреза Б-Б. Предварительно обязательно двумя щелчками левой кнопки мыши вид спереди следует сделать текущим. Затем строится горизонтальный разрез (рис.117).

6. При построении фронтального разреза совместим часть вида и часть разреза, т.к. это симметричные фигуры. На линию разделяющую вид и разрез проецируется наружное ребро призмы, поэтому разграничим вид и разрез сплошной тонкой волнистой линией, проводимой правее оси симметрии, т.к. ребро наружное. Для построения волнистой линии используется кнопка Кривая Безье, расположенной на панели Геометрия, вычерчиваемая стилем Для линии обрыва (рис.118). Последовательно указывайте точки, через которые должна пройти кривая Безье. Закончить выполнение команды следует нажатием на кнопку Создать объект.

Рис.118 Выбор стиля линии для обрыва

Построение сечений

Сечением называется изображения предмета, которые получаются при мысленном рассечении предмета плоскостью. На сечении показывают только то, что расположено в секущей плоскости.

Положение секущей плоскости, с помощью которой образуется сечение, на чертеже указывают линией сечения, так же как для разрезов.

Сечения в зависимости от расположения их на чертежах разделяются на вынесенные и наложенные. Вынесенные сечения располагаются чаще всего на свободном поле чертежа и обводятся основной линией. Наложенные сечения располагают непосредственно на изображении предмета и обводят тонкими линиями (рис.119).

Рис.119 Построение сечений

Рассмотрим последовательность построения чертежа призмы с вынесенным наклонным сечением Б-Б (рис.117).

1. Сделаем вид спереди активным двойным щелчком левой кнопкой мыши по виду и начертим линию разреза с помощью кнопки Линия разреза. Выберем текст надписи В-В.

2. С помощью кнопки Линия разреза, расположенной на панели Ассоциативные виды (рис.115), появившейся ловушкой укажем линию секущей плоскости В-В. С помощью переключателя Разрез/сечение на Панели свойств следует выбрать тип изображения – Сечение (рис.116), масштаб отображаемого сечения выбирается из окна Масштаб.

Построенное сечение располагается в проекционной связи, что ограничивает его перемещение по чертежу, но проекционную связь можно отключать с помощью кнопки Проекционная связь.

На готовом чертеже следует прочертить осевые линии, при необходимости проставить размеры.

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...