Гидроксид натрия применение. Реферат: Получение гидроксида натрия

К химическим методам получения гидроксида натрия относятся известковый и ферритный.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется множество энергоносителей, получаемый едкий натр сильно загрязнён примесями.

Сегодня эти методы почти полностью вытеснены электрохимическими методами производства.

Известковый метод

Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашенной известью при температуре около 80 °С. Этот процесс называется каустификацией; он проходит по реакции:

Na 2 СО 3 + Са (ОН) 2 = 2NaOH + CaСО 3

В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. После NaOH плавят и разливают в железные барабаны, где он застывает.

Ферритный метод

Ферритный метод получения гидроксида натрия состоит из двух этапов:

    Na 2 СО 3 + Fe 2 О 3 = 2NaFeО 2 + СО 2

    2NaFeО 2 + xH 2 О = 2NaOH + Fe 2 O 3 *xH 2 О

Реакция 1 представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 1100-1200 °С. Помимо этого образуется спек - феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции 2; получается раствор гидроксида натрия и осадок Fe 2 O 3 *xH 2 О, который после отделения его от раствора возвращается в процесс. Получаемый раствор щелочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а после получают твёрдый продукт в виде гранул или хлопьев.

Электрохимические методы получения гидроксида натрия

Электрохимически гидроксид натрия получают электролизом растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водородаихлора. Этот процесс можно представить суммарной формулой:

2NaCl + 2H 2 О ±2е - → H 2 + Cl 2 + 2NaOH

Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них - электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий - электролиз с жидким ртутным катодом (ртутный метод).

В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.

7. Очистка сернистого газа от каталитических ядов.

Газообразные выбросы очень неблагоприятно влияют на экологическую обстановку в местах расположения этих промышленных предприятий, а также ухудшают санитарно-гигиенические условия труда. К агрессивным массовым выбросам относятся окислы азота, сероводород, сернистый, углекислый и многие другие газы.

Например, азотнокислотные, сернокислотные и другие заводы нашей страны ежегодно выбрасывают в атмосферу десятки мил­лионов кубометров окислов азота, представляющих собой сильный и опасный яд. Из этих окислов азота можно было бы выработать тысячи тонн азотной кислоты.

Не менее важной задачей является очистка газов от двуокиси серы. Общее количество серы, которое выбрасывается в нашей стране в атмосферу только в виде сернистого газа, составляет око­ло 16 млн. т. в год. Из этого количества серы можно выработать до 40 млн. т. серной кислоты.

Значительное количество серы, главным образом, в виде серо­водорода содержится в коксовом газе.

С дымовыми газами из заводских труб и энергетических уста­новок ежегодно выбрасываются в атмосферу несколько миллиар­дов кубометров углекислого газа. Этот газ может быть использован для получения эффективных углеродсодержащих удобрений.

Приведенные примеры показывают, какие огромные материаль­ные ценности выбрасываются в атмосферу с газообразными выбросами.

Но более серьезный ущерб эти выбросы приносят тем, что они от­равляют воздушный бассейн в городах и на предприятиях: ядови­тые газы губят растительность, крайне вредно действуют на здо­ровье людей и животных, разрушают металлические сооружения и коррозируют оборудование.

Хотя в последние годы отечественные промышленные предприятия работают не на полную мощность, но проблема борьбы с вредными выбросами стоит очень остро. А учитывая общую экологическую обстановку на планете, необходимо принять самые срочные и самые радикальные меры по очистке выбросных газов от вредных примесей.

Каталитические яды

контактные яды, вещества, вызывающие «отравление» катализаторов (См. Катализаторы ) (обычно гетерогенных), т. е. снижающие их каталитическую активность или полностью прекращающие каталитическое действие. Отравление гетерогенных катализаторов происходит в результате адсорбции яда или продукта его химического превращения на поверхности катализатора. Отравление может быть обратимым или необратимым. Так, в реакции синтеза аммиака на железном катализаторе кислород и его соединения отравляют Fe обратимо; в этом случае при воздействии чистой смеси N 2 + H 2 поверхность катализатора освобождается от кислорода и отравление снижается. Соединения серы отравляют Fe необратимо, действием чистой смеси не удается восстановить активность катализатора. Для предотвращения отравления реагирующую смесь, поступающую на катализатор, подвергают тщательной очистке. К числу наиболее распространенных К. я. для металлических катализаторов относятся вещества, содержащие кислород (H 2 O, CO, CO 2), серу (H 2 S, CS 2 , C 2 H 2 SH и др.), Se, Te, N, Р, As, Sb, а также непредельные углеводороды (C 2 H 4 , C 2 H 2) и ионы металлов (Cu 2+ , Sn 2+ , Hg 2+ , Fe 2+ , Co 2+ , Ni 2+). Кислотные катализаторы обычно отравляются примесями основании, а основные - примесями кислот.

8. Получение нитрозных газов.

Выделившиеся после отбеливания оксиды азота конденсируются в водяном и рассольном конденсаторах и используются для приготовления сырой смеси. Поскольку температура кипения N 2 O 4 составляет 20,6 °С при давлении 0,1 МПа, в этих условиях газообразный NO 2 может быть полностью сконденсирован (давление насыщенных паров N 2 O 4 при 21,5 °С над жидким N 2 O 4 равно 0,098 МПа, т.е. меньше атмосферного). Другим способом получения жидких оксидов азота является конденсация их под давлением и при пониженной температуре. Если вспомнить, что при контактном окислении NH 3 при атмосферном давлении концентрация оксидов азота составляет не более 11 % об., их парциальное давление соответствует 83,5 мм рт.ст. Давление же оксидов азота над жидкостью (упругость паров) при температуре конденсации (–10 °С) равно 152 мм рт.ст. Это означает, что без повышения давления конденсации жидкие оксиды азота получить из этих газов нельзя, следовательно, конденсация оксидов азота из такого нитрозного газа при температуре –10 °С начинается при давлении 0,327 МПа. Степень конденсации резко возрастает с увеличением давления до 1,96 МПа, при дальнейшем росте давления степень конденсации изменяется незначительно.

Переработка нитрозного газа (т.е. после конверсии NH 3) в жидкие оксиды азота малоэффективна, т.к. даже при Р=2,94 МПа степень конденсации составляет 68,3 %.

В условиях конденсации чистого N 2 O 4 , охлаждение не следует вести ниже температуры –10 °С, т.к. при –10,8 °С N 2 O 4 кристаллизуется. Наличие примесей NO, NO 2 , Н 2 О снижает температуру кристаллизации. Так смесь, имеющая состав N 2 O 4 +5 % N 2 O 3 , кристаллизуется при –15,8 °С.

Полученные жидкие оксиды азота хранят в стальных резервуарах.

9. Получение простого и двойного суперфосфата

"Суперфосфат" - смесьCa(H 2 PO 4) 2 *H 2 O и CaSO 4 . Наиболее распространённое простое минеральное фосфорное удобрение. Фосфорв суперфосфате присутствует в основном в видемонокальцийфосфатаи свободнойфосфорной кислоты. Удобрение содержитгипси др.примеси(фосфатыжелезаиалюминия,кремнезём, соединенияфтораи др.). Получают простой суперфосфат изфосфоритов, обрабатывая ихсерной кислотой, по реакции:

Са 3 (РО 4 ) 2 + 2H 2 SO 4 = Са (H 2 PO 4 ) 2 + 2CaSO 4 .

Простой суперфосфат - серый порошок, почти не слёживаемый, среднерассеиваемый; в удобрении 14-19,5 % усваивамаемый растениями P 2 O 5 . Сущность производства простого суперфосфата состоит в превращении природного фторапатита, нерастворимого в воде и почвенных растворах, в растворимые соединения, преимущественно в монокальцийфосфат Са(Н 2 РО 4) 2 . Процесс разложения может быть представлен следующим суммарным уравнением:

2Ca 5 F(PO 4) 3 +7H 2 SO 4 +3H 2 O=3Са(Н 2 РО 4) 2 *Н 2 О]+7+2HF; (1) ΔН= - 227,4кДж.

Практически в процессе производства простого суперфосфата разложение протекает в две стадии. На первой стадии около 70% апатита реагирует с серной кислотой. При этом образуются фосфорная кислота и полугидрат сульфата кальция:

Ca 5 F(PO 4) 3 +5H 2 SO 4 +2,5H 2 O = 5(CaSO 4 *0,5H 2 O) +3H3PO 4 +HF (2)

Функциональная схема получения простого суперфосфата представлена на рис. Основные процессы проходят на первых трех стадиях: смешения сырья, образования и затвердевания суперфосфатной пульпы, дозревания суперфосфата на складе.

Рис. Функциональная схема производства простого суперфосфата

Для получения товарного продукта более высокого качества суперфосфат после дозревания подвергают нейтрализации твердыми добавками (известняком, фосфоритной мукой и т. п.) и гранулируют.

Двойной суперфосфат - концентрированное фосфорное удобрение. Основной фосфорсодержащий компонент - моногидрат дигидроортофосфата кальцияCa(H 2 PO 4) 2 H 2 O. Обычно содержит также другие фосфаты кальция и магния. По сравнению с простым фосфатом не содержит балласта - CaSO 4 . Главное преимущество двойного суперфосфата - малое количество балласта, то есть это сокращает транспортные расходы, затраты на хранение, тару

Двойной суперфосфат производят действием серной кислоты Н 2 SО 4 на природные фосфаты. В России применяют главным образом поточный способ: разложение сырья с последующим гранулированием и высушиванием полученной пульпы в барабанном грануляторе-сушилке. Товарный двойной суперфосфат с поверхности нейтрализуют мелом или NH 3 для получения стандартного продукта. Некоторое количество двойного суперфосфата вырабатывают камерным способом. Фосфорсодержащие компоненты в основном те же, что и в простом суперфосфате, но в большем количестве, а содержание CaSO 4 составляет 3-5 %. При нагревании выше 135-140 °C двойной суперфосфат начинает разлагаться и плавиться в кристаллизационной воде, после охлаждения становится пористым и хрупким. При 280-320 °C ортофосфаты переходят в мета-,пиро- иполифосфаты, которые находятся в усвояемой и частично водорастворимой формах. Он плавится при 980 °C, превращаясь после охлаждения в стекловидный продукт, в котором 60-70 % метафосфатов цитраторастворимы. Двойной Суперфосфат содержит 43-49 % усвояемого фосфорного ангидрида (пятиокиси фосфора) Р 2 О 5 (37-43 % водорастворимого), 3,5-6,5 % свободной фосфорной кислоты Н 3 РО 4 (2,5-4,6 % Р 2 О 5):

Ca 3 (PO 4) 2 + 2H 2 SO 4 = Ca(H 2 PO 4) 2 + 2CaSO 4

Также есть метод разложения фосфоросодержащего сырья фосфорной кислотой:

Ca 5 (PO 4) 3 F + 7H 3 PO 4 = 5Ca(H 2 PO 4) 2 + HF

Блок-схема технологического процесса производства двойного суперфосфата: 1 - смешение измельченного фосфорита и фосфорной кислоты; 2 - разложение фосфорита I ступени; 3 - разложение фосфорита II ступени; 4 - гранулирование пульпы; 5 - очищение фосфорсодержащих газов от пыли; 6 - сушка гранул пульпы; 7 - получение топочных газов (в топке); 8 - грохочение сухого продукта; 9 - измельчение крупной фракции; 10 - отделение мелкой и средней (товарной) фракции на втором грохоте; 11 - смешение измельченной крупной фракции и мелкой; 12 - аммонизация (нейтрализация) остаточной фосфорной кислоты; 13 - очищение газов, содержащих аммиак и пыль; 14 - охлаждение нейтрализованной товарной фракции двойного суперфосфата;


10.Получение экстракционной ортофосфорной кислоты

Получение экстракционной фосфорной кислоты

Непосредственно перед получением ЭФК, получают фосфор по специальной технологии


Рис 1. Схема производства фосфора : 1 - бункеры сырья; 2 - смеситель; 3 - кольцевой питатель; 4 - бункер шихты; 5 - электропечь; 6 - ковш для шлака; 7 - ковш для феррофосфора; 8 - электрофильтр; 5 - конденсатор; 10 - сборник жидкого фосфора; 11 - отстойник

Экстракционный способ (позволяет производить наиболее чистую фосфорную кислоту) включает основные стадии: сжигание (окисление) элементного фосфора в избытке воздуха, гидратацию и абсорбцию полученного P4O10 , конденсацию фосфорной кислоты и улавливание тумана из газовой фазы. Существуют два способа получения P4O10: окисление паров P (в промышленности используют редко) и окисление жидкого P в виде капель или пленки. Степень окисления P в промышленных условиях определяется температурой в зоне окисления, диффузией компонентов и другими факторами. Вторую стадию получения термической фосфорной кислоты- гидратацию P4O10 - осуществляют абсорбцией кислотой (водой) либо взаимодействием паров P4O10 с парами воды. Гидратация (P4O10 + 6H2O4H3PO4) протекает через стадии образования полифосфорных кислот. Состав и концентрация образующихся продуктов зависят от температуры и парциального давления паров воды.

Все стадии процесса совмещены в одном аппарате, кроме улавливания тумана, которое всегда производят в отдельном аппарате. В промышленности обычно используют схемы из двух или трех основных аппаратов. В зависимости от принципа охлаждения газов существуют три способа производства термической фосфорной кислоты: испарительный, циркуляционно-испарительный, теплообменно-испарительный.

Испарительные системы, основанные на отводе теплоты при испарении воды или разбавленной фосфорной кислоты, наиболее просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности.

Циркуляционно-испарительные системы позволяют совместить в одном аппарате стадии сжигания P, охлаждения газовой фазы циркулирующей кислотой и гидратации P4O10. Недостаток схемы - необходимость охлаждения больших объемов кислоты. Теплообменно-испарительные системы совмещают два способа отвода теплоты: через стенку башен сжигания и охлаждения, а также путем испарения воды из газовой фазы; существенное преимущество системы - отсутствие контуров циркуляции кислоты с насосно-холодильным оборудованием.

На отечественных предприятиях эксплуатируют технологические схемы с циркуляционно-испарительным способом охлаждения (двухбашенная система). Отличительные особенности схемы: наличие дополнительной башни для охлаждения газа, использование в циркуляционных контурах эффективных пластинчатых теплообменников; применение высокопроизводительной форсунки для сжигания P, обеспечивающей однородное тонкодисперсное распыление струи жидкого P и полное его сгорание без образования низших оксидов.

Технологическая схема установки мощностью 60 тыс. т в год 100%-ной H3PO4 приведена на рис. 2. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей кислотой. Нагретая в башне кислота охлаждается оборотной водой в пластинчатых теплообменниках. Продукционная кислота, содержащая 73-75% H3PO4, отводится из контура циркуляции на склад. Дополнит, охлаждение газов из башни сжигания и абсорбцию кислоты производят в башне охлаждения (гидратации), что снижает послед, температурную нагрузку на электрофильтр и способствует эффективной очистке газов. Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H3PO4, охлаждаемой в пластинчатых теплообменниках. Газы из башни гидратации после очистки от тумана H3PO4 в пластинчатом электрофильтре выбрасываются в атмосферу. На 1 т 100%-ной H3PO4 расходуется 320 кг P.


Рис. 2. Циркуляционная двухбашенная схема производства экстракционной H3PO4: 1 - сборник кислой воды; 2 - хранилище фосфора; 3,9 - циркуляционные сборники; 4,10 - по-гружные насосы; 5,11 - пластинчатые теплообменники; 6 - башня сжигания; 7 - фосфорная форсунка; 8 -башня гидратации; 12 - электрофильтр; 13 - вентилятор.

11. Катализаторы окисления сернистого газа в серный ангидрид. Контактирование

Серный ангидрид получается при окислении сернистого газа кислородом воздуха:

2SO2 + O2 ↔ 2SO3,

Это обратимая реакция.

Уже давно было замечено, что окись железа, пятиокись ванадия и особенно мелко раздробленная платина ускоряют реакцию окисления сернистого газа в серный ангидрид. Эти вещества являются катализаторами реакции окисления сернистого газа. Так, например, при 400° С в присутствии платинированного асбеста (т. е. асбеста, на поверхность которого нанесена мелко раздробленная платина) почти 100% сернистого газа окисляется кислородом воздуха в серный ангидрид. При более высокой температуре выход серного ангидрида уменьшается, так как ускоряется обратная реакция - реакция разложения серного ангидрида на сернистый газ и кислород. При 1000° С серный ангидрид почти нацело разлагается на исходные вещества. Таким образом, основными условиями осуществления синтеза серного ангидрида являются применение катализаторов и нагревание до определенной, не слишком высокой температуры.

Синтез серного ангидрида требует соблюдения также еще двух условий: сернистый газ должен быть очищен от примесей, которые тормозят действие катализаторов; сернистый газ и воздух должны быть высушены, так как влага снижает выход серного ангидрида.

Изобретение относится к химической промышленности и может быть использовано в производстве мыл, красок, целлюлозы и других отраслях промышленности. Способ включает получение плава CaO·Na 2 O путем обжига отходов производства кальцинированной соды, содержащих CaO, СаСО 3 и Na 2 CO 3 , при температуре 1000-1100°С, последующее выщелачивание и упаривание образовавшегося гидроксида натрия. Получаемый на стадии выщелачивания гидроксид кальция подвергают карбонизации углекислым газом, выделяемым на стадии получения плава. Предложенный способ позволяет увеличить концентрацию гидроксида натрия в целевом продукте и утилизировать отходы производства кальцинированной соды. 3 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к химической промышленности, в частности к технологии получения гидроксида натрия, который находит широкое применение в производстве мыл, красок, целлюлозы и других отраслях промышленности.

Еще из школьных учебников известны способы получения едкого натра, например, согласно следующим реакциям:

Na+HOH=NaOH+½H 2

[Г.Реми. Курс неорганической химии. Т.I, Издательство иностранной литературы, М., 1963].

Получают едкий натр либо электролизом водных растворов хлористого натрия, либо химическими методами.

При электролизе водных растворов хлористого натрия происходит образование щелочи: выделение на аноде хлора, а на катоде - водорода приводит к увеличению в прикатодном пространстве концентрации ОН-ионов. В промышленности для получения едкого натра и хлора применяют два типа ванн: с твердыми электродами и проточным электролитом, движущимся от анода к катоду (ртутный катод) [Краткая химическая энциклопедия. Изд. «Советская энциклопедия», т.3, М., 1964, с.376-377].

Согласно способу получения едкого натра, описанному в книге «Технология содопродуктов» [С.В.Беленький, С.М.Круглый, С.К.Секованный - Изд. «Химия», М., 1972, с.205-258] в результате электролиза в диафрагменных ваннах с твердым катодом получают электролитическую щелочь, хлор и водород. Технологическая схема осуществления процесса в цехе электролиза приводится в этом же литературном источнике на стр.250-253. Получаемая в цехе электролизера электролитическая щелочь, содержащая 110-135 г/л гидроксида натрия и 170-190 г/л неразложившегося хлорида натрия, перекачивается в цех выпарки, где концентрируется до 42-50% товарного гидроксида натрия.

Получение гидроксида натрия по способу электролиза с твердым катодом, в качестве которого используют ртуть, осуществляют на многих промышленных предприятиях, в частности в г.Стерлитамаке на объединении «Каустик».

Основным недостатком вышеуказанного способа является использование ртутного катода, а также выделение большого количество хлора, как побочного продукта, что экологически небезопасно.

Известен способ получения гидроксида натрия электролизом водного раствора хлорида натрия при повышенной температуре в электролизере с фильтрующей диафрагмой, разделяющей анолит и католит при непрерывной подпитке анолита очищенным концентрированным нагретым раствором хлорида натрия до температуры 35-80°С , сначала при рН раствора хлорида натрия, равном 2-3, в течение 24-48 часов, а затем при рН, равном 3,5-5,0 .

К недостаткам известных способов следует отнести также сравнительно низкую концентрацию получаемого гидроксида натрия.

Для повышения концентрации гидроксида натрия предложен способ получения гидроксида натрия, который включает электролиз поваренной соли, упаривание электролитической щелочи на первой стадии до концентрации гидроксида натрия в растворе 22-30%, отделение кристаллов поваренной соли с последующим упариванием щелочи, смешение упаренного раствора гидроксида натрия, содержащего кристаллы поваренной соли и сульфата натрия с охлажденным раствором, подачи части охлажденного раствора на смешение с упаренным раствором гидроксида натрия, отделение полученного целевого продукта .

К недостаткам известных способов следует отнести также низкую концентрацию и чистоту получаемого гидроксида натрия за счет содержания в нем сульфата натрия.

Известен усовершенствованный способ получения водного гидроксида натрия, включающий электролиз подачей водного раствора карбоната натрия в анодную камеру, а в катодную камеру подают воду, где в качестве анодов используют платину, платинированный титан, титан, покрытый окисью платины .

Данный способ также характеризуется получением гидроксида натрия никой концентрации и к тому же является дорогостоящим из-за применения дорогих платиновых материалов, что позволяет использовать этот способ в препаративном применении.

Из химических методов известен ферритный способ производства едкого натра, заключающийся в каустификации карбоната натрия путем ее взаимодействия с окисью железа при температуре 1000-1100°С с последующим гашением, выщелачиванием образовавшегося феррита натрия водой

[С.В.Беленький, С.М.Круглый, С.К.Секованный. Технология содопродуктов. Изд. «Химия», М., 1972, с.285-287] или раствором едкого натра, содержащим 200-360 г/л NaOH .

К недостаткам ферритного способа получения гидроксида натрия следует отнести неэкономичность процесса из-за длительности разложения феррита натрия до равновесного состояния, для чего требуется аппаратура большой емкости и ведение процесса при кипении, что представляет определенную трудность.

Из химических методов наиболее распространен известковый метод производства едкого натра.

В основе способа лежит реакция взаимодействия раствора соды с гашеной известью или известковым молоком (каустификация):

Равновесие реакции смещено в сторону образования NaOH вследствие плохой растворимости СаСО 3 . Обработанная таким образом сода становится едкой (каустической). Поэтому получаемый таким путем гидроксид натрия называют каустической содой (обычно 12-15%) [Н.С.Ахметов. Неорганическая химия. М.: Высшая школа, 1975, с.591-592].

Подача на каустификацию известкового молока извести позволяет использовать теплоту гашения СаО. Кроме того, образуется более концентрированный раствор едкого натра за счет вывода из процесса воды, поступающей с известковым молоком [И.Н.Шокин, С.А.Крашенинников. Технология соды. М.: Химия, 1975, с.205].

В этом же источнике на странице 218-220 приведено описание технологической схемы производства едкого натра известковым способом, включающей взаимодействие жженой извести с содовым раствором.

Основным недостатком этого метода является низкая концентрация получаемого гидроксида натрия и сложность технологии, связанная с концентрированием гидроксида натрия, что в целом увеличивает его себестоимость.

Известен способ получения гидроксида натрия путем взаимодействия кальцинированной соды с известью с последующим упариванием образовавшихся щелоков, отделением раствора гидроксида натрия .

Также известен способ получения гидроксида натрия путем взаимодействия нормального содового раствора с известковым молоком в три стадии с последующим упариванием осветленного щелока первой и второй стадии, выпавшие при этом в осадок соли смешивают с суспензией третьей стадии каустификации и фильтратом, отделением и выщелачиванием соды и едкого натра из суспензии с переходом их в раствор .

Недостатком известного способа является невысокая степень регенерации соды и едкого натра (96,0-96,5%), а также большое содержание сульфата натрия, которое направляют в отвал, а следствие этого - невысокая концентрация целевого едкого натра.

Наиболее близким техническим решением к прототипу является способ получения гидроксида натрия, включающий взаимодействие карбоната натрия с известью, карбонизацию извести, разделение образовавшихся карбоната кальция, гидроксида натрия, упаривание раствора гидроксида натрия RU №2143398, МПК С 01 D 1/22, С 01 F 11/18, 1995].

К недостаткам известного метода следует отнести основной недостаток - небольшая концентрация получаемого гидроксида натрия, а также высокая себестоимость получаемых продуктов из-за применения дорогого исходного сырья.

Задачей предлагаемого изобретения является разработка способа получения гидроксида натрия с использованием дешевого сырья, увеличение концентрации гидроксида натрия в целевом продукте, утилизация отходов производства кальцинированной соды.

Поставленная задача достигается тем, что на выщелачивание подают плав CaO·Na 2 O, предварительно полученный путем обжига отходов производства кальцинированной соды, содержащих СаО, СаСО 3 и Na 2 CO 3 , при температуре 1000-1100°С, и упаривание образовавшегося щелока производят до коцентрации гидроксида натрия не менее 40 мас.%, а получаемый гидроксид кальция на стадии выщелачивания подвергают карбонизации углекислым газом, выделяемым на стадии получения плава.

В качестве исходных продуктов, подаваемых на обжиг, используют отходы производства кальцинированной соды, которые не находили широкого квалифицированного применения:

Карбонат кальция - мелкий «недопал» (10-40 мм) после обжига известняка в печах;

Известь - отход после печей обжига;

Некондицию карбоната натрия (например, сорт «В»)

Процесс осуществляют следующим образом (чертеж).

Отходы производства кальцинированной соды - кальцийсодержащие отходы - недопал - с практически постоянным содержанием СаСО 3 60-70%, с размером кусков 10-40 мм, а также некондиция Na 2 CO 3 (например, марка В) с содержанием Na 2 СО 3 99,2% и известь после печей обжига с содержанием СаО 60-80% - в стехиометрическом соотношении из бункеров 1-3 подают на смешение и гранулирование в гранулятор 4.

Полученные гранулы (размер гранул 5-30 мм) далее подают в печь обжига 5. Обжиг гранул проводят при температуре 1000-1100°С в течение 1,5-2,0 час в токе дымовых газов.

Полученный плав CaO·Na 2 O направляют на выщелачивание в шаровой мельнице 6 при температуре 80-95°С

Полученный гидроксид натрия после отделения в радиальном отстойнике 7 гидроксида кальция подают на упаривание на установку выпарки 8. Целевой гидроксид натрия получают 40%-ной концентрации. Для получения гидроксида натрия более высокой концентрации проводят дополнительное упаривание в аппарате 9.

А выделенную гидроокись кальция из отстойника 7 подают на взаимодействие с углекислым газом, образовавшимся в результате обжига плава (I), в карбонизатор 10, после чего полученный карбонат кальция подают на вакуум-фильтр 11, далее на сушку в сушилку 12, после чего - на склад готовой продукции.

Сущность способа подтверждается следующими примерами.

Из бункера 1 недопал с рамером кусков 10-40 мм с содержанием СаСО 3 60 мас.% в количестве 71,4 кг, из бункера 2 известь после печей обжига с содержанием СаО 60 мас.% в количестве 40 кг, из бункера 3 кальцинированную соду марки "В" с содержанием Na 2 СО 3 99,2 мас.% в количестве 100 кг подают на гранулирование в гранулятор 4. После гранулятора смесь исходных компонентов подают в печь обжига 5, где обжиг проводят при температуре 1000°С в течение 1,5 час. Далее полученный плав подают на выщелачивание, которое осуществляют подачей воды в шаровую мельницу 6. Выщелачивание проводят при температуре 90°С. В результате выщелачивания получают гидроксид натрия 300 кг 25%-ной концентрации и гидроксид кальция в количестве 111,6 кг. Гидроксид натрия направляют на упаривание и получают целевой гидроксид натрия 40%-ной концентрации. А гидроксид кальция в количестве 111,6 кг влажностью 45% подают в карбонизатор 10, куда также подают углекислый газ после печи обжига 5. Полученную суспензию карбоната кальция подают на вакуум-фильтр 11 и далее в сушилку 12. Получают 150 кг карбоната кальция с содержанием основного вещества 92%.

Другие примеры представлены в таблице.

На основании приведенных данных видно, что предлагаемый способ получения гидроксида натрия является безотходным, позволит получить гидроксид натрия высокой концентрации. Кроме того, получают высокочистый карбонат кальция, который может найти применение в медицине, для изготовления зубных паст. А также предлагаемый способ позволит утилизировать отходы производства кальцинированной соды, которые в настоящее время недостаточно квалифицированно используются.

Таблица
№ примера Исходные компоненты, 1:1:1 (моль) на основное вещество Температура обжига, °С Стадия выщелачивания Стадия упарки Стадия карбонизации
недопал известь - после печей обжига кальц. сода (марка «В») Кол-во плава, кг Т-ра, °С Кол-во NaOH, кг С NaOH (полученная), % Т-ра, °С C NaOH , (конечная), % Кол-во Са(ОН) 2 , кг Кол-во СаСО 3 , кг
2 71,4 40 100 1000 186 80 322 25 80 40 111,6 150
3 80,4 45 100 1100 180 90 320 23 90 40 112,0 155
4 71,4 50 100 1050 184 95 323 20 85 40 111,6 155
5 70,0 50 150 1150 Происходит образование спека и плав не выгружается
6 71,4 40 100 950 Недостаточная температура для образования плава
7 71,4 45 100 1050 186 90 321 25 85 40 112,1 154

1. Способ получения гидроксида натрия, включающий взаимодействие карбоната натрия с известью с последующим выщелачиванием получаемой смеси, упариванием образовавшегося щелока и выделением целевого продукта, а также дополнительно получаемого карбоната кальция, отличающийся тем, что на выщелачивание подают плав СаО·Na 2 O, предварительно полученный путем обжига отходов производства кальцинированной соды, содержащих СаО, СаСО 3 и Na 2 CO 3 , при температуре 1000-1100°С, и упаривание образовавшегося щелока производят до концентрации гидроксида натрия не менее 40 мас.%, а получаемый гидроксид кальция на стадии выщелачивания подвергают карбонизации углекислым газом, выделяемым на стадии получения плава.

2. Способ по п.1, отличающийся тем, что в качестве отходов производства кальцинированной соды используют мелкий "недопал", образующийся на стадии обжига карбоната кальция, фракции 5-30 мм с содержанием СаСО 3 60-70%, негашеную известь после печей обжига с содержанием СаО 60-80%, а также отходы производства кальцинированной соды с содержанием Na 2 CO 3 не менее 92%.

3. Способ по пп.1 и 2, отличающийся тем, что для получения плава СаО·Na 2 O отходы производства кальцинированной соды - "недопал", негашеную известь и некондицию Na 2 CO 3 - предварительно смешивают в стехиометрическом соотношении, гранулируют до размера гранул 5-30 мм.

4. Способ по пп.1 и 2, отличающийся тем, что выщелачивание плава СаО·Na 2 O проводят водой при температуре 80-95°С.

Введение .

Гидроксид натрия или едкий натр (NaOH), хлор, соляная кислота НС1 и водород получают в промышленности в настоящее время методом электролиза раствора хлорида натрия.

Едкий натр или гидроксид натрия - сильная щелочь, называемая в быту каустической содой, применяется в мыловарении, в производстве глинозема - полупродукта для получения металлического алюминия, в лакокра­сочной, нефтеперерабатывающей промышленности, в производстве искусственного шелка, в промышленности органического синтеза и других отраслях народного хозяйства.

При работе с хлором, хлористым водородом, соляной кислотой и едким натром необходимо строго соблюдать правила техники без­опасности: вдыхание хлора вызывает резкий кашель и удушье, вос­паление слизистых оболочек дыхательных путей, отек легких, а в дальнейшем образование в легких воспалительных очагов.

Хлористый водород даже при незначительном содержании его в воздухе вызывает раздражение в носу и гортани, покалывание в груди, хрипоту и удушье. При хроническом отравлении малыми его концентрациями особенно страдают зубы, эмаль которых быстро разрушается.

Отравления соляной кислотой весьма сходны с отравлениями хлором.

Химические способы получения гидроксида натрия.

К химическим способам получения гидроксида натрия относятся из­вестковый и ферритный.

Известковый способ получения гидроксида натрия заключается во взаимодействии раствора соды с известковым молоком при темпе­ратуре около 80°С. Этот процесс называется каустификацией; он описывается реакцией

Na 2 C0 3 + Са (ОН) 2 = 2NaOH + CaC0 3 (1)

растворосадок

По реакции (1) получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, ко­торый упаривается до получения расплавленного продукта, содер­жащего около 92% NaOH. Расплавленный NaOH разливают в же­лезные барабаны, где он застывает.

Ферритный способ описывается двумя реакциями:

Na 2 C0 3 + Fe 2 0 3 = Na 2 0 Fe 2 0 3 + C0 2 (2)

феррит натрия

Na 2 0 Fe 2 0 3 -f H 2 0 = 2 NaOH + Fe 2 O 3 (3)

раствор осадок

реакция (2) показывает процесс спекания кальцинированной соды с окисью железа при температуре 1100-1200°С. При этом об­разуется спек - ферритнатрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции (3); получается раствор гидроксида натрия и осадок Fe 2 O 3 , который после отделения его от раствора возвращается в процесс. Раствор содержит около 400 г/л NaOH. Его упаривают до получения про­дукта, содержащего около 92% NaOH.

Химические методы получения гидроксида натрия имеют существен­ные недостатки: расходуется большое количество топлива, получае­мый едкий натр загрязнен примесями, обслуживание аппаратов трудоемко и др. В настоящее время эти методы почти полностью вытеснены электрохимическим способом производства.

Понятие об электролизе и электрохимических процессах.

Элек­трохимическими процессами называют химические процессы, про­текающие в водных растворах или расплавах под действием по­стоянного электрического тока.

Растворы и расплавы солей, растворы кислот и щелочей, назы­ваемые электролитами, относятся к проводникам второго рода, в которых перенос электрического тока осуществляется ионами. (В проводниках первого рода, например металлах, ток переносится электронами.) При прохождении электрического тока через элек­тролит на электродах происходит разряд ионов и выделяются соот­ветствующие вещества. Этот процесс называется электролизом. Аппарат, в котором осуществляется электролиз, называется элек­тролизером или электролитической ванной.

Электролиз используется для получения ряда химических про­дуктов- хлора, водорода, кислорода, щелочей и др. Следует отме­тить, что путем электролиза получают химические продукты высо­кой степени чистоты, в ряде случаев недостижимой при химических методах их производства.

К недостаткам электрохимических процессов следует отнести высокий расход энергии при электролизе, что увеличивает стоимость получаемых продуктов. В связи с этим проведение электрохимиче­ских процессов целесообразно только на базе дешевой электриче­ской энергии.

Сырье для получения гидроксида натрия.

Для производства гидроксида натрия, хлора, водорода используют раствор поваренной соли, который подвергают электролизу Поваренная соль встречается в природе в виде подземных залежей каменной соли, в водах озер и морей и в виде естественных рассо­лов или растворов. Залежи каменной соли находятся в Донбассе, на Урале, в Сибири, Закав­казье и других районах. Богаты солью у нас в стране и некоторые озера.

В летнее время происходит испаре­ние воды с поверхности озер, и пова­ренная соль выпадает в виде кристал­лов. Такая соль называется самосадоч­ной. В морской воде содержится до 35 г/л хлорида натрия. В местах с жарким климатом, где происходит ин­тенсивное испарение воды, образуются концентрированные растворы хлорида натрия, из которых он кристалли­зуется. В недрах земли, в пластах соли протекают подземные воды, которые растворяют NaCl и образуют подзем­ные рассолы, выходящие через буровые скважины на поверхность.

Растворы поваренной соли, независимо от пути их получения содержат примеси солей кальция и магния и до того, как они передаются в цеха электролиза, подвер­гаются очистке от этих солей. Очистка необходима потому, что в процессе электролиза могут образовываться плохо растворимые гидроокиси кальция и магния, которые нарушают нормальный ход электролиза.

Очистка рассолов производится раствором соды и известковым молоком. Помимо химической очистки, растворы осво­бождаются от механических примесей отстаиванием и фильтрацией.

Электролиз растворов поваренной соли производится в ваннах с твердым железным (стальным) катодом и с диафрагмами и в ваннах с жидким ртутным катодом. В любом случае промышленные элект­ролизеры, применяемые для оборудования современных крупных хлорных цехов, должны иметь высокую производительность, про­стую конструкцию, быть компактными, работать надежно и устой­чиво.

Электролиз растворов хлористого натрия в ваннах со стальным катодом и графитовым анодом .

Дает возможность получать гидроксид натрия, хлор и водород в одном аппарате (электролизере). При прохождении постоянного электрического тока через водный раствор хлорида натрия можно ожидать выделения хлора:

2CI - - Þ С1 2 (а)

а также кислорода:

20Н - - Þ 1/2О 2 + Н 2 О(б)

H 2 0-2eÞ1/2О 2 + 2H +

Нормальный электродный потенциал разряда ОН - -ионов состав­ляет + 0,41 в, а нормальный электродный потенциал разряда ионов хлора равен + 1,36 в. В нейтральном насыщенном растворе хлористого натрия концентрация гидроксильных ионов около 1 ·10 - 7 г-экв/л. При 25° С равновесный потенциал разряда гидрок­сильных ионов будет

Равновесный потенциал разряда, ионов хлора при концентра­ции NaCI в растворе 4,6 г-экв/л равен

Следовательно, на аноде с малым перенапряжением должен в первую очередь разряжаться кислород.

Однако на графитовых анодах перенапряжение кислорода много выше перенапряжения хлора и поэтому на них будет происходить в основном разряд ионов С1 - с выделением газообразного хлора по реакции (а).

Выделение хлора облегчается при увеличении концентрации NaCI в растворе вследствие уменьшения при этом величины равно­весного потенциала. Это является одной из причин использования при электролизе концентрированных растворов хлорида натрия, содержащих 310-315 г/л.

На катоде в щелочном растворе происходит разряд молекул воды по уравнению

Н 2 0 + е = Н + ОН - (в)

Атомы водорода после рекомбинации выделяются в виде моле­кулярного водорода

2Н Þ Н 2 (г)

Разряд ионов натрия из водных растворов на твердом катоде невозможен вследствие более высокого потенциала их разряда по сравнению с водородом. Поэтому остающиеся в растворе гидроксид - ионы образуют с ионами натрия раствор щелочи.

Процесс разложения NaCI можно выразить таким образом сле­дующими реакциями:


т. е. на аноде идет образование хлора, а у катода - водорода и гидроксида натрия.

При электролизе, наряду с основными, описанными процессами, могут протекать и побочные, один из которых описывается урав­нением (б). Помимо этого, хлор, выделяющийся на аноде, частично растворяется в электролите и гидролизуется по реакции

В случае диффузии щелочи (ионов ОН -) к аноду или смещения катодных и анодных продуктов хлорноватистая и соляная кислоты нейтрализуются щелочью с образованием гипохлорита и хлорида натрия:

НОС1 + NaOH = NaOCl + Н 2 0

НС1 + NaOH = NaCl + Н 2 0

Ионы ClO - на аноде легко окисляются в ClO 3 - . Следовательно, из-за побочных процессов при электролизе будут образовываться гипохлорит, хлорид и хлорат натрия, что приведет к сниже­нию выхода по току и коэффициента использования энергии. В ще­лочной среде облегчается выделение кислорода на аноде, что также будет ухудшать показатели электролиза.

Чтобы уменьшить протекание побочных реакций, следует соз­дать условия, препятствующие смешению катодных и анодных про­дуктов. К ним относятся разделение катодного и анодного пространств диафрагмой и фильтрация электролита через диафрагму в на­правлении, противоположном движению ОН - ионов к аноду. Такие диафрагмы называются фильтрующими диафрагмами и выполняются из асбеста.

Повышение температуры электролиза и концентрации NaCl в электролите, благодаря которым уменьшается растворимость хлора, а также снижение концентрации NaOH в католите сокра­щают вероятность побочных процессов.

Повышение температуры электролиза увеличивает не только выход по току, но и электропроводность электролита, благодаря чему снижается напряжение на ванне. Таким образом, повышение температуры уменьшает расход электрической энергии и поэтому обычно электролиз растворов хлорида натрия проводят при 70-80° С.

Промышленные электролизеры с фильтрую­щей диафрагмой широко применяются в промышленности. Схема такой ванны приведена на рис. 1 Ванна имеет стальной перфори­рованный (с отверстием) катод и графитовый анод. К катоду плотно прилегает фильтрующая диафрагма из асбестового картона.

Раствор хлорида натрия подается в анодное пространство, фильтруется сквозь диафрагму и достигает катода. Скорость фильтрации электролита ха­рактеризуется так называемой протекаемостью диафрагмы v (см 3 /ч) и зависит от площади сечения диафрагмы F (см 1), гидростатического давления столба элек­тролита h , толщины диа­фрагмы b (см) и вязкости электролита μ .

При прохождении постоянного электрического тока на аноде образуется хлор, на катоде - водород и щелочь, которая, проходя через от­верстия катода, стекает в катодное пространство и удаляется из ванны.

Схема ванны с фильтрующей диафрагмой:

1- диафрагма; 2 - стальной катод;

3 - катодное простран­ство;

4 - анод; 5 - анодное пространство

В ваннах не происходит полного разложения поваренной соли и

устанавливается постоянная концентрация щелочи и неразложившейся поваренной соли.

В электролитическом щелоке, вытекающем из ванны, содержится 110-120 г/л NaOH и 180-170 г/л NaCl.

Промышленные электролизеры должны иметь большую произво­дительность, что достигается увеличением нагрузки. Применение катодов с очень развитой поверхностью позволяет создавать ком­пактные электролизеры с нагрузкой до 50000 а. Диафрагма в этом случае насасывается или «осаждается» на поверхность катода из суспензии асбестового волокна в соляно-щелочных растворах при помощи вакуума.


Рис. 2. Ванна с осажденной диафрагмой:

1- бетонное днище; 2 - стальной катод; 3 - бетонная крышка; 4 - труба для подачи рассола; 5 - труба для отвода хлора; 6 - графитовые аноды; 7 - штуцер для удаления водорода; 8 - трубка для слива электролитического щелока; 9 - медный токоведущий

стержень

Примером ванны с осажденной диафрагмой может служить ванна Хукера типа S, рис. 2. Эта ванна состоит из трех основных ча­стей - бетонного днища, стального катода и бетонной крышки. Днище имеет форму прямоугольного корыта, в котором залиты свин­цом нижние концы графитовых анодов и медный стержень, служащий для подвода тока. Аноды представляют собой графитовые пла­стины. Катод - стальная рама, внутри которой смонтирован ряд плоских карманов из стальной сетки. Расположение карманов и их ширина таковы, что установке катода на днище ванны карманы помещаются точно между анодами.

В крышке ванны расположены отверстия для подачи рассола и отвода хлора. Электролизер имеет тепловую изоляцию уменьшающую потери энергии за счет отдачи тепла в окружающую среду.

Электролиз растворов хлорида нат­рия в ваннах с ртутным катодом и графито­вым анодом.

Дает возможность получать более концентриро­ванные продукты, чем в ваннах с диафрагмой.

При пропускании через раствор NaCl постоянного электриче­ского тока на графитовом аноде происходит разряд ионов С1 - с по­следующим выделением газообразного хлора

2С1 - - Þ С1 2

На ртутном катоде выделение водорода происходит с большим перенапряжением. Если на железном катоде потенциал выделения водорода из нейтрального раствора равен 0,415 в, то на ртутном ка­тоде он составляет 1,7 - 1,85 в. Натрий же на ртути выделяется с большим эффектом деполяризации, обусловленным образованием амальгамы натрия NaHg n , растворяющейся в избытке ртути. Бла­годаря этому потенциал разряда натрия на ртутном катоде оказы­вается ниже равновесного, а именно 1,2 в, в то время как его равно­весный потенциал равен 2,71 в. Таким образом, на ртутном катоде протекают следующие процессы:

Na + + е Þ Na

Na + n Н g = NaHg n

и водород практически почти не выделяется.

Амальгама натрия разлагается в специальном аппарате - разлагателе водой по реакции

NaHg n + Н 2 0 = NaOH + 1/2Н 2 + nHg

Электролиз в ванне с ртутным катодом протекает в среднем при напряжении 4,3-4,4 в.

Ванна с ртутным катодом, принципиальная схема которой приведена на рис. 3, состоит из двух частей: электро­лизера и разлагателя.


Электролизер и разлагатель конструктивно могут быть разде­лены и сообщаться друг с другом трубопроводом или могут быть расположены в одном общем кожухе.

В любом случае электролизер - длинный ящик прямоуголь­ного сечения, сверху закрытый крышкой, в которой укреплены графитовые аноды. Рис. 3. Схема ванны с ртутным катодом:

1- электролизер; 2 - разлагатель; 3 - насос

К слегка наклонному дну ванны подведена ка­тодная шина и по нему непрерывно движется тонкий слой ртути. Таким образом, днище ванны является катодом. Электролизер питается концентрированным (310-315 г/л) раствором хлорида натрия, который в процессе электролиза обедняется поваренной солью до концентрации 260-270 г/л, выводится из ванны, обесхлоривается под разряжением и при продувке его сжатым воздухом, донасыщается солью, очищается от примесей (в схеме не показано) и передается обратно на электролиз. Образующийся хлор выводится через крышку ванны.

При движении ртути по дну электролизера в процессе электро­лиза получается амальгама натрия, которая растворяется в ртути и выводится из электролизера в разлагатель. Разлагатели могут быть различной конструкции - горизонтальные и вертикальные. Горизонтальные разлагатели представляют собой прямоугольный желоб, закрытый крышкой. В разлагатель поступает вода и из него отводятся образующиеся продукты - водород и щелочь. Дно разлагателя имеет небольшой уклон, благодаря чему ртуть движется по дну, выводится из разлагателя и подъемниками различного типа передается в электролизер.

Ванна с ртутным катодом занимает большие площади, что свя­зано с горизонтальным расположением ртутного катода. Сущест­вуют ванны, в которых катодами служат вертикальные амальга­мированные диски. Эти ванны компактны, но сложны конструктивно и в эксплуатации.

Сопоставление основных показателей работы ванн двух типов показывает, что вследствие высокого напряжения на ваннах с ртутным катодом расход энергии выше, чем в диафрагменных. Кроме того, эксплуатация ванн с ртутным катодом более сложна, чем диафрагменных, капитальные затраты на их установку выше и условия труда в цехах, оборудованных ртутными ваннами, тяжелее, чем в цехах, где установлены ванны с диафрагмой.

Возможность получения в ртутных ваннах концентрированных щелоков, свободных от поваренной соли, является существенным достоинством ртутных ванн. Исходя из этого во всех случаях, когда требуется чистая щелочь (например, для производства вискозного волокна), предпочтение должно быть отдано ваннам с ртутным като­дом. В связи с ростом потребности в чистом каустике электролиз в ваннах с ртутным катодом приобрел большое распространение.

Щелочь, получаемая при электролизе, в виде растворов, подвер­гается концентрированию в выпарных аппаратах. Щелочь из диафрагменных ванн содержит до 130- 140 г/л NaOH и 180-170 г/л NaCl. Растворимость поваренной соли с увеличением концентрации NaOH в растворе падает. Так, в щелоке, содержащем 50% (769 г/л) NaOH, при 20° С растворимость NaCl составляет 13,9 г/л. Вследст­вие этого при выпарке электролитических щелоков, полученных в ваннах с диафрагмой, наряду с концентрированием раствора про­исходит кристаллизация хлорида натрия, который возвращается на электролиз. Практически после упарки и плавки получают ще­лочь, содержащую 92-94% NaOH, 2-3% NaCl.

Вывод.

Таким образом гидроксид натрия на сегодняшний день получают методом электролиза водного раствора хлорида натрия. При этом используются два вида электролизеров, каждый из которых имеет свои достоинства и недостатки. Но в обоих случаях процесс получения гидроксида натрия сопровождается получением газообразных побочных продуктов, которые являются опасными веществами как для человека так и для окружающей среды. Поэтому следует соблюдать особые меры безопасности на данном производстве.

Литература.

1. Общая химическая технология. Под ред. И.П. Мухленова. Учебник для химико-технологических специальностей вузов. М.: Высшая школа.

2. Фурмер И.Э., Зайцев В.Н. Общая химическая технология. – М.: Высшая школа, 1978.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...