Сравнительная характеристика строения клеток прокариот и эукариот. Прокариотические и эукариотические клетки Органоиды прокариотической клетки

Прочитаем информацию.

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Прокариоты (доядерные) - клетки, не обладающие, в отличие от эукариотов, оформленным клеточным ядром и другими внутренними мембранными органоидами.

К прокариотическим клеткам относят клетки бактерий, (сине-зеленые водоросли), .

Строение прокариотических клеток

Структура

Строение и состав

Функции структуры

Плазматическая мембрана

У некоторых микроорганизмов - выпячивания внутрь клетки, образующие стопки плоских мешочков (мезосомы)

У цианобактерий и некоторых пурпурных бактерий - множество мембранных

1.транспортная

2.защитная

5.восприятие сигналов внешней среды

6.участие в иммунных процессах

7.обеспечение поверхностных свойств клетки

Неоформленное ядро, т.е. нуклеарная область, не имеет ядерной мембраны (оболочки).

Содержит одну кольцевую молекулу ДНК - нуклеотид, которую называют бактериальной хромосомой.

Кроме нуклеотида часто встречается небольшая кольцевая молекула ДНК - .

Хранение и реализация наследственной информации, и передача ее дочерним поколениям.

Цитоплазма

Очень мало мембранных органоидов (ЭПС, аппарат Гольджи, пластиды, митохондрии).

Очень много рибосом более мелких, чем у эукариотов.

Синтез белков

Рибосомы

Мельче по размерам, чем у эукариот и расположены в цитоплазме свободно (не образуют ).

Синтез белков

Клеточная стенка

Состоит из комплексов белков и олигосахаридов, уложенных слоями.

Белковые нити, не образуют микротрубочек. Состоят из трех структур , и .

Движение

Муреин (пептидогликан) — это важнейший компонент клеточной стенки бактерий, который выполняет опорную и защитную функции. Он имеет сетчатую структуру и образует жёсткий наружный каркас клетки. Состоит из углеводов и белков. Вещества, убивающие бактерий (лизоцим, антибиотики), разрушают муреин или нарушают его образование.

Цианобактерии (сине-зеленые водоросли) - группа крупных грамотрицательных бактерий, способных к фотосинтезу.

Археи - группа микроскопических одноклеточных орагнизмов-прокариот, резко отличающихся по ряду физиолого-биохимических свойств от истинных бактерий (эубактерий). Группу архебактерий выделили в 1977. Среди них нет возбудителей инфекционных болезней.

Тилакоиды - ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза.

Рецепция в физиологии - осуществляемое рецепторами восприятие раздражителей и преобразование в нервное возбуждение.

Полисома (полирибосома) - структура клеточной цитоплазмы, которая состоит из нескольких рибосом, соединенных с помощью молекул информационной (матричной) РНК.

Жгутики бактерий - состоят из трех субструктур:

  • филамент (фибрилла, пропеллер) - полая белковая нить толщиной 10-20 нм и длиной 3-15 мкм.
  • крюк - более толстое, чем филамент (20-45 нм), белковое образование.
  • базальное тело - образование, расположенное у основания жгутика. Имеет форму цилиндра. Длина около 0,5 мкм.

Плазмиды - дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы:

Википедия. Жгутик

Опорно-двигательные структуры клетки


Прокариотические клетки - это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы. К прокариотическим (или доядерным) организмам относят бактерии и синезеленые водоросли (цианобактерии). На основании общности строения и резких отличий от других клеток прокариотические выделяют в самостоятельное царство дробянки.

Рассмотрим строение прокариотической клетки на примере бактерий. Генетический аппарат прокариотической клетки представлен ДНК единственной кольцевой хромосомы , находится в цитоплазме и не отграничен от нее оболочкой. Такой аналог ядра называют нуклеоидом. ДНК не образует комплексов с белками и поэтому все гены, входящие в состав хромосомы, "работают", т.е. с них непрерывно считывается информация.

Прокариотическая клетка окружена мембраной, отделяющей цитоплазму от клеточной стенки, образованной из сложного, высокополимерного вещества. В цитоплазме органелл мало, но присутствуют многочисленные мелкие рибосомы (бактериальные клетки содержат от 5000 до 50 000 рибосом).

Цитоплазма прокариотической клетки пронизана мембранами, образующими эндоплазматическую сеть, в ней и находятся рибосомы, осуществляющие синтез белков.

Внутренняя часть клеточной стенки прокариотической клетки представлена плазматической мембраной, выпячивания которой в цитоплазму образуют мезосомы, участвующие в построении клеточных перегородок, репродукции, и являются местом прикрепления ДНК. Дыхание у бактерий осуществляется в мезосомах, у сине-зеленых водорослей в цитоплазматических мембранах.

У многих бактерий внутри клетки откладываются запасные вещества: полисахариды, жиры, полифосфаты. Резервные вещества, включаясь в обмен веществ, могут продлевать жизнь клетки в отсутствие внешних источников энергии.

(1-клеточная стенка, 2-наружная цитоплазматическая мембрана, 3-хромосома(кольцевая молекула ДНК), 4-рибосома, 5-мезосома, 6-впячивание наружной цитоплазмотической мембраны, 7-вакуоли, 8-жгутики, 9-стопки мембран, в которых осуществляется фотосинтез)

Как правило, бактерии размножаются делением надвое. После удлинения клетки постепенно образуется поперечная перегородка, закладывающаяся в направлении снаружи внутрь, затем дочерние клетки расходятся или остаются связанными в характерные группы - цепочки, пакеты и т.д. Бактерия - кишечная палочка каждые 20 минут удваивает свою численность.

Для бактерий характерно спорообразование. Оно начинается с отшнуровывания части цитоплазмы от материнской клетки. Отшнуровавшаяся часть содержит один геном и окружена цитоплазматической мембраной. Затем вокруг споры вырастает клеточная стенка, нередко многослойная. У бактерий наблюдается половой процесс в форме обмена генетической информацией между двумя клетками. Половой процесс повышает наследственную изменчивость микроорганизмов.

Большинство живых организмов объединено в надцарство эукариот, включающих царство растений, грибов и животных. Эукариотические клетки крупнее прокариотических клеток , состоят из поверхностного аппарата, ядра и цитоплазмы.

1. Какие из перечисленных структур имеются в бактериальной клетке?

Цитоплазматическая мембрана, ядро, цитоплазма, разнообразные мембранные органоиды, немембранные органоиды.

В бактериальной клетке имеются: цитоплазматическая мембрана, цитоплазма, немембранные органоиды (рибосомы).

2. Каковы особенности строения поверхностного аппарата клеток бактерий?

Поверхностный аппарат бактериальных клеток включает цитоплазматическую мембрану и клеточную стенку. Кроме того, у некоторых групп бактерий в состав поверхностного аппарата может входить дополнительная наружная мембрана или слизистая капсула.

Строение и функции плазмалеммы бактерий сходны с таковыми у эукариот, а клеточная стенка по строению существенно отличается от оболочек клеток растений и грибов – её основу составляет жёсткая решетка из полисахарида муреина.

3. Что представляет собой бактериальная хромосома? Плазмиды? Что такое мезосомы?

Бактериальная хромосома представляет собой кольцевую молекулу ДНК, которая располагается непосредственно в цитоплазме бактериальной клетки. Кроме того, в цитоплазме могут содержаться небольшие кольцевые молекулы ДНК, способные автономно удваиваться и при делении передаваться дочерним клеткам. Такие внехромосомные структуры называются плазмидами.

Мезосомы – мембранные структуры прокариотической клетки, которые образуются путём впячивания плазмалеммы внутрь цитоплазмы. Часто они имеют вид закрученных в спираль или клубок образований. Считается, что мезосомы могут принимать участие в образовании поперечных перегородок при делении клеток, а также служат местом прикрепления бактериальных хромосом.

4. Какие организмы называются аэробами? Анаэробами?

Аэробы – это организмы, использующие для клеточного дыхания кислород.

Анаэробы – организмы, которые способны обитать в бескислородной среде (на клетки некоторых анаэробов кислород действует и вовсе губительно).

5. В клетках прокариот отсутствуют такие органоиды, как митохондрии, пластиды, комплекс Гольджи, эндоплазматическая сеть. Каким образом их клетки могут функционировать без этих органоидов? Почему прокариоты не могут «обойтись» без рибосом?

У прокариот функции мембранных органоидов выполняет цитоплазматическая мембрана и её производные. Например, в клетках цианобактерий содержатся округлые замкнутые мембранные структуры – хроматофоры, в которых расположены фотосинтетические пигменты, т.е. хроматофоры выполняют функции хлоропластов.

Белки в клетках всех живых организмов выполняют чрезвычайно важные биологические функции, многие из которых не способны выполнять никакие другие вещества. Биосинтез белков осуществляется исключительно на рибосомах. Поэтому прокариоты, как и другие живые организмы, не могут "обойтись" без рибосом.

6. Сравните по различным признакам прокариотическую и эукариотическую клетки, выявите черты сходства и различия.

Сходство:

● Имеют поверхностный аппарат, включающий цитоплазматическую мембрану и надмембранный комплекс. Сходное строение и функции цитоплазматической мембраны.

● Имеется генетический аппарат, представленный ДНК, а также система биосинтеза белка (все типы РНК, рибосомы).

● Клетки некоторых прокариот и эукариот могут иметь жгутики.

Различия:

● Генетический аппарат эукариот представлен линейными молекулами ДНК, находящимися в ядре клетки. В клетках прокариот отсутствует ядро, их генетический аппарат представлен кольцевой молекулой ДНК (бактериальной хромосомой), расположенной непосредственно в цитоплазме клетки.

● В эукариотических клетках, в отличие от клеток прокариот, имеются одномембранные и двумембранные органоиды. Наличие мезосом характерно только для прокариотических клеток.

● Как правило, клетки эукариот значительно крупнее клеток прокариот.

● Клеточная стенка у прокариот построена из муреина, а у эукариот – из целлюлозы или хитина, либо отсутствует.

● Рибосомы прокариот меньше по размеру, чем рибосомы эукариот.

7*. Сравните строение двумембранных органоидов (митохондрий, хлоропластов) и бактериальных клеток. Какие черты сходства обнаруживаются? Предположите, чем они могут объясняться.

Сходство:

● Генетический аппарат митохондрий, хлоропластов и бактерий представлен кольцевой молекулой ДНК, находящейся не в ядре, а непосредственно во внутренней среде этих органоидов и клеток (в матриксе митохондрии, в строме хлоропласта, в цитоплазме бактериальной клетки).

● Цитоплазматическая мембрана бактерий и внутренняя мембрана митохондрий и хлоропластов образуют многочисленные впячивания (мезосомы, кристы и тилакоиды соответственно), служащие для увеличения площади поверхности.

● Сопоставимые размеры. Средние размеры бактерий – 0,25-10 мкм, хлоропластов – 4-10 мкм, митохондрии имеют ширину 0,25-1 мкм при длине 1-60 мкм.

И (или) другие существенные признаки.

Согласно теории симбиогенеза (эндосимбиоза) митохондрии и пластиды являются видоизменёнными прокариотическими организмами, которые в глубокой древности (2,5 - 1,5 млрд лет назад) поселились в более крупных гетеротрофных клетках-хозяевах, постепенно утратили свою автономность и стали органоидами.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Клетка прокариот устроена значительно проще клеток животных и растений. Снаружи она покрыта клеточной стенкой, выполняющей защитные, формирующие и транспортные функции. Жёсткость клеточной стенки обеспечивает муреин. Иногда бактериальная клетка покрыта сверху капсулой или слизистым слоем.

Протоплазма бактерий, как и у эукариот, окружена плазматической мембраной . В мешковидных, трубчатых или пластинчатых впячиваниях мембраны находятся мезосомы, участвующие в процессе дыхания, бактериохлорофилл и другие пигменты. Генетический материал прокариот не образует ядра, а находится непосредственно в цитоплазме. ДНК бактерий – одиночные кольцевые молекулы, каждая из которых состоит из тысяч и миллионов пар нуклеотидов. Геном бактериальной клетки намного проше, чем у клеток более развитых существ: в среднем ДНК бактерий содержит несколько тысяч генов.

В прокариотических клетках отсутствует эндоплазматическая сеть , а рибосомы свободно плавают в цитоплазме. Нет у прокариот и митохондрий ; частично их функции выполняет клеточная мембрана.

Прокариоты

Бактерии – мельчайшие из организмов, обладающих клеточным строением; их размеры составляют от 0,1 до 10 мкм. На обычной типографской точке можно разместить сотни тысяч бактерий среднего размера. Бактерии можно увидеть только в микроскоп, поэтому их называют микроорганизмами или микробами; микроорганизмы изучаются микробиологией . Часть микробиологии, изучающая бактерии, называется бактериологией . Начало этой науке положил Антони ван Левенгук в XVII веке.

Бактерии – древнейшие из известных организмов. Следы жизнедеятельности бактерий и сине-зелёных водорослей (строматолиты) относятся к архею и датируются возрастом 3,5 млрд. лет.

Из-за возможности обмена генами между представителями различных видов и даже родов систематизировать прокариот довольно сложно. Удовлетворительная систематика прокариот не построена до сих пор; все существующие системы являются искусственными и классифицируют бактерии по какой-либо группе признаков, не учитывая их филогенетического родства. Ранее бактерии вместе с грибами и водорослями включались в подцарство низших растений. В настоящее время бактерии выделены в отдельное надцарство прокариот. Наиболее распространённой системой классификации является система Берги , в основу которой положено строение клеточной стенки.

В конце XX века учёные обнаружили, что клетки сравнительно малоизученной группы бактерий – архебактерий – содержат р-РНК , отличные по своему строению и от р-РНК прокариот, и от р-РНК эукариот. Строение генетического аппарата архебактерий (наличие интронов и повторяющихся последовательностей, процессинг , форма рибосом ) сближает их с эукариотами; с другой стороны, архебактерии имеют и типичные признаки прокариот (отсутствие ядра в клетке, наличие жгутиков, плазмид и газовых вакуолей, размер р-РНК, азотфиксация). Наконец, архебактерии отличаются от всех остальных организмов строением клеточной стенки, типом фотосинтеза и некоторыми другими признаками. Архебактерии способны существовать в экстремальных условиях (например, в горячих источниках при температуре свыше 100 °С, в океанских глубинах при давлении 260 атм, в насыщенных солевых растворах (30 % NaCl)). Некоторые архебактерии выделяют метан, другие используют для получения энергии соединения серы.

По-видимому, архебактерии являются очень древней группой организмов; «экстремальные» возможности свидетельствуют об условиях, характерных для поверхности Земли в архейскую эру . Считается, что архебактерии наиболее близки к гипотетическим «проклеткам», породившим впоследствии всё многообразие жизни на Земле.

В последнее время стало ясно, что существуют три основных типа р-РНК , представленные, соответственно, первая – в клетках эукариот, вторая – в клетках настоящих бактерий, а также в митохондриях и хлоропластах эукариот, третья – у архебактерий. Исследования молекулярной генетики заставили по-новому взглянуть на теорию происхождения эукариот. В настоящее время считается, что на древней Земле одновременно эволюционировали три различные ветви прокариот – архебактерии, эубактерии и уркариоты , характеризовавшиеся разным строением и различными способами получения энергии. Уркариоты, являвшиеся, по сути, ядерно-цитоплазматическим компонентом эукариот, впоследствии включили в себя в качестве симбионтов представителей различных групп эубактерий, которые превратились в митохондрии и хлоропласты будущих клеток эукариот.

Таким образом, ранг класса, выделявшийся ранее для архебактерий, явно недостаточен. В настоящее время многие исследователи склонны разделять прокариот на два царства: архебактерии и настоящие бактерии (эубактерии ) или даже вовсе выделять архебактерии в отдельное надцарство Archaea.

Классификация настоящих бактерий приведена на схеме .

В бактериальной клетке отсутствует ядро, хромосомы свободно располагаются в цитоплазме. Кроме того, в клетке бактерии отсутствуют мембранные органоиды: митохондрии , ЭПС , аппарат Гольджи и пр. Снаружи клеточная мембрана покрыта клеточной стенкой.

Большинство бактерий передвигаются пассивно, с помощью водных или воздушных течений. Только некоторые из них имеют органеллы движения – жгутики . Жгутики прокариот очень просты по устройству и состоят из белка флагеллина, образующего полый цилиндр диаметром 10–20 нм. Они ввинчиваются в среду, продвигая клетку вперёд. По-видимому, это единственная известная в природе структура, использующая принцип колеса.

По своей форме бактерии делятся на несколько групп:

    кокки (имеют округлую форму);

    бациллы (имеют палочковидную форму);

    спириллы (имеют форму спирали);

    вибрионы (имеют форму запятой).

По способу дыхания бактерии делятся на аэробов (большинство бактерий) и анаэробов (возбудители столбняка, ботулизма, газовой гангрены). Первым для дыхания нужен кислород, для вторых кислород бесполезен или даже ядовит.

Бактерии размножаются путем деления примерно каждые 20 минут (в благоприятных условиях). ДНК реплицируется, каждая дочерняя клетка получает по своей копии родительской ДНК. Возможна также передача ДНК между неделящимися клетками (посредством захвата «голой» ДНК, при помощи бактериофагов или путём конъюгации , когда бактерии соединяются между собой копуляционными фимбриями), однако увеличения количества особей при этом не происходит. Размножению препятствуют солнечные лучи и продукты их собственной жизнедеятельности.

Поведение бактерий не отличается особой сложностью. Химические рецепторы регистрируют изменения кислотности среды и концентрацию различных веществ: сахаров, аминокислот, кислорода. Многие бактерии реагируют на изменения температуры или освещенности, некоторые бактерии могут чувствовать магнитное поле Земли.

При неблагоприятных условиях бактерия покрывается плотной оболочкой, цитоплазма обезвоживается, жизнедеятельность почти прекращается. В таком состоянии споры бактерии могут часами находиться в глубоком вакууме, переносить температуру от –240 °С до +100 °С.

Урок

«Органоиды клетки. Особенности клеток прокариот и эукариот»

(Слайд 1)

Цель урока : знакомство с особенностями строениями и функционирования постоянных компонентов клеток (органоидов); сравнение особенностей клеток прокариот и эукариот

Оборудование: мультимедийные презентации «Органоиды клетки», «Клетки прокариот и эукариот», рабочая тетрадь по биологии (11 класс), с.61-64, раздаточный материал

Организационный момент.

Ход урока:

План урока: (Слайд 2 )

    Органоиды клетки

    Немембранные органоиды

    Мембранные органоиды

    Клетки прокариот и эукариот

Изучение нового материала:

    Органоиды клетки

Органоидами (органеллами) (Слайд 3 ) называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие осуществление процессов и свойств, необходимых для поддержания ее жизнедеятельности.

Органоиды могут иметь как мембранное, так и немембранное строение.

Классификация органоидов (Слайд 4) Работа по заполнению схемы классификации: вспоминают материал, изученный в 9 классе (желательна запись в тетрадь).

ЗАДАНИЕ (распечатки на каждой парте): Используя объяснения учителя и материалы учебника, заполнить таблицу:

Органоид

Особенность строения

Наличие нуклеиновых кислот

Немембранные органоиды

Рибосомы

Клеточный центр

Микротрубочки

Микрофиламенты

Хромосомы

Одномембранные органоиды

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Двумембранные органоиды

Митохондрии

Пластиды

    Немембранные органоиды

РИБОСОМЫ (Слайд 5).

Рибосома - важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц (Слайд 6). Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией . В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (Слайд 7 ) . Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

Рибосомы эукариот включают четыре молекулы рРНК

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции".

КЛЕТОЧНЫЙ ЦЕНТР (ЦЕНТРОСОМА) (Слайд 8).

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

МИКРОТРУБОЧКИ (Слайд 9)

Это белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой цилиндры диаметром 25 нм с полостью внутри. Их длина может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Микротрубочки в клетке используются в качестве "рельсов" для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными.

МИКРОФИЛАМЕНТЫ (Слайд 10 ).

Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков. Участвуют в формировании цитоскелета клетки, амебоидном движении и др. Нуклеиновых кислот нет

ХРОМОСОМЫ (Слайд 11 ) – учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

Органоиды ядра эукариот, каждая хромосома образована одной молекулой ДНК и молекулами белков. Состоит из двух нитей – хроматид, соединенных центромерой. Являются носителями генетической информации.

    Мембранные органоиды

Одномембранные органоиды

ПЛАЗМОЛЕММА (Слайд 12 ) - учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

Это жидкостно-мозаическую модель, где липидные слои мембраны пронизаны белковыми молекулами. Она обеспечивает разграничительную функцию по отношению к внешней для клетки среде и выполняет транспортную функцию. Нуклеиновых кислот нет.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС ) (Слайд 13)

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому ) (Нажать кнопкой мышки) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР (Нажать кнопкой мышки ), принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки. Нуклеиновых кисло нет.

КОМПЛЕКС ГОЛЬДЖИ (ПЛАСТИНЧАТЫЙ КОМПЛЕКС) (Слайд 14 ) – нажать кнопку мыши.

Это мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме (Слайд 15). Комплекс Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году (Слайд 16 ).

В цистернах Аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен - цистерны располагающиеся ближе к ядру клетки (цис -Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы , отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс -Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

ЛИЗОСОМЫ (Слайд 17 )

Это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома) , где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови - нейтрофилах .

Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки.

Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых органелл, утративших функциональную активность (аутофагия ). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки - автолиз . Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

ВАКУОЛИ

Это крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль (Слайд 18) , которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Содержимое вакуолей - клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества - фитогормоны (регуляторы роста), фитонциды, ферменты . В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

Функции центральной вакуоли:

    Накопление питательных веществ, метаболитов и пигментов;

    Удаление из цитоплазмы продуктов метаболизма;

    Регуляция водно-солевого обмена;

    Поддержание тургорного давления;

    Участие в разрушении макромолекул и клеточных структур.

Пищеварительные вакуоли (Слайд 19 ) животных клеток содержат литические (расщепляющие) ферменты и пищевые частицы. Здесь идет внутриклеточное пищеварение.

Выделительные вакуоли простейших содержат воду и растворенные в ней продукты метаболизма. Функция – осморегуляция, удаление жидких продуктов метаболизма.

Двумембранные органоиды

МИТОХОНДРИИ (Слайд 20)

Двумембранные органеллы продолговатой формы. Они являются энергетическими станциями клеток. Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ - универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических систем митохондрий.

Митохондрии имеют наружную мембрану состоящую из двух слоёв, разделённых пространством в 60-80 ангстрем. От внутреннего слоя в полость митохондрии выступают выпячивания - кристы (нажать кнопку мыши ) . Пространство между кристами заполнено веществом, называемым матриксом (нажать кнопку мыши ).

В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Содержат ДНК и РНК.

ПЛАСТИДЫ.

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших. Покрыты двойной мембраной. Содержат ДНК и РНК. Совокупность пластид клетки образует пластидом . По окраске и выполняемой функции выделяют три основных типа пластид (Слайд 21 ) :

Лейкопласты - неокрашенные пластиды, как правило, выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.

Хромопласты - пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.

Хлоропласты - пластиды, несущие фотосинтезирующие пигменты - хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру

    Клетки прокариот и эукариот

(в качестве домашнего задания с объяснением задания в классе)

Задание (Слайд 22 ):

    Рассмотреть таблицу 2 на с.118

    Заполнить рабочую тетрадь на с.63-64

    Заполнить таблицу, расставив знаки «+» и «-»

Клеточные структуры

Прокариотическая клетка

Эукариотическая клетка

Клеточная стенка

Плазмолемма

Хромосомы

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Мезосома

Рибосомы

Включения

Информационные источники:

    Гигани О.Б. Общая биология.9-11: Таблицы:схемы/О.Б.гигани. – М.: Гуманитар.изд.центр ВЛАДОС, 2007.

    Кольман Я., Рем К.-Г. Наглядная биохимия: Пер. с нем. - М.: Мир, 2000. http://yanko.lib.ru/books/biolog/nagl_biochem/04.htm

    Википедия - ru.wikipedia.org

    priroda.clow.ru/text/1190.htm – Энциклопедия «Растения и животные»

    biology.asvu.ru/page.php?id=17

    www.college.ru/.../paragraph4/theory.html

    shkola.lv/index.php?mode=lsntheme&themeid=104

Дополнительный материал для учителя (Гигани О.Б, 2007)

Органоид

Строение

Функции

Наличие нуклеиновых кислот

Немембранные органоиды

Рибосомы

Образованы двумя субъединицами (большой и малой), сформированными молекулами рРНК и белков

Участие в синтезе белка

Клеточный центр (центросома)

Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

Входят в состав митотического аппарата клетки, участвуют в делении клетки

Микротрубочки

Полые цилиндрические структуры

Образуют цитоскелет клетки, веретено деления, центриоли, жгутики и реснички

Микрофиламенты

Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков

Участие в формировании цитоскелета клетки, амебоидном движении, эндоцитозе, циклозе

Хромосомы

Органоиды ядра эукариотических клеток, каждая хромосома образована одной молекулой ДНК и молекулами белков

Носители генетической информации

Одномембранные органоиды

Плазмолемма (цитолемма)

Эндоплазматическая сеть

    Гладкая (агранулярная) ЭПС

    Шероховатая (гранулярная) ЭПС

Элементарная мембрана, покрывающая клетку снаружи

Система мембран, образующих канальца, пузырьки, цистерны, трубочки. Соединена с плазмолеммой и ядерной мембраной.

На поверхности мембран располагаются ферменты, катализирующие синтез липидов и углеводов.

На поверхности мембран располагаются рибосомы.

Поддержание формы клетки, защита от неблагоприятных внешних воздействий, транспорт веществ в клетку и из нее, рецепторная (благодаря различным молекулам, встроенным в мембрану, воспринимает сигналы окружающей среды)

Транспорт веществ в клетке, разделение клетки на отсеки, посттрансляционная модификация белков.

Синтез липидов и углеводов, накопление и удаление ядовитых веществ

Синтез белков на прикрепленных к мембране рибосомах, объединенных в комплексы - полисомы

Комплекс Гольджи (пластинчатый комплекс)

Строение в клетках разных организмов сильно различается. Структурно-функциональная единица комплекса Гольджи – диктиосома – стопка из 5-20 плоских цистерн, переходящих в сеть трубочек и пузырьков

Модификация веществ; упаковка их в мембранные пузырьки, которые затем используются клеткой или удаляются из нее; синтез некоторых веществ; формирование клеточных мембран; формирование лизосом

Лизосомы

Мембранные пузырьки округлой формы, содержат литические (расщепляющее) ферменты

Участие в формировании пищеварительных вакуолей (внутриклеточное пищеварение); разрушение крупных молекул клетки; лизис (разрушение) отдельных клеточных структур (автолиз) и всей клетки; устранение провизорных органов

    Центральная вакуоль растительной клетки

    Пищеварительные вакуоли животных клеток

    Выделительные вакуоли простейших

Полости, окруженные мембраной и содержащие водянистую жидкость с различными растворенными веществами.

Ограничена тонопластом – мембраной. Заполнена клеточным соком (растворенными органическими и неорганическими веществами, пигментами, метаболитами). Формируется при участии ЭПС.

Накопление питательных веществ, метаболитов и пигментов; удаление из цитоплазмы продуктов метаболизма; регуляция водно-солевого обмена; поддержание тургорного давления; участие в разрушении макромолекул и клеточных структур.

Внутриклеточное пищеварение

Осморегуляция, удаление жидких продуктов метаболизм

Двумембранные органоиды

Митохондрии

Наружная мембрана гладкая, внутренняя – образует выросты – кристы. Внутри находится матрикс – полужидкое вещество, содержащее ферменты, кольцевые молекулы ДНК, молекулы РНК, рибосомы

Синтез АТФ

Пластиды

    Протопластиды

    Хлоропласты

    Хромопласты

    Лейкопласты

Наружная мембрана гладкая, внутренняя мембрана погружена в строму – полужидкое вещество. Содержат кольцевые молекулы ДНК, молекулы РНК и рибосомы

Не имеют окраски

Внутренняя мембрана образует уплощенные мешочки – тилакоиды, в которых располагаются молекулы пигментов (хлорофилла, каротиноидов), группа тилакоидов образует граны

Внутренняя мембрана образует немногочисленные тилакоиды

Пластиды, из которых формируются все виды пластид (хлоропласты, лейкопласты, хромопласты)

Фотосинтез, могут превращаться в хромопласты

Окраска лепестков цветков, плодов, листьев, иногда корней

Синтез и накопление крахмала, масло, белков, могут превращаться в хлоропласты и хромопласты

Сравнительная характеристика прокариотических и эукариотических клеток

Клеточные структуры

Прокариотическая клетка

Эукариотическая клетка

Клеточная стенка

У клеток растений и грибов

Плазмолемма

Хромосомы

- (есть нуклеотид – 1 кольцевая молекула ДНК)

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Двумембранные органоиды (пластиды, митохондрии)

Мезосома

Рибосомы

Включения



Похожие статьи

  • Пирог «Шарлотка» с сушеными яблоками Пирожки с сушеными яблоками

    Пирог с сушёными яблоками был очень популярен в деревнях. Готовили его обычно в конце зимы и весной, когда убранные на хранение свежие яблоки уже кончались. Пирог с сушёными яблоками очень демократичен - в начинку к яблокам можно...

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...