Удельная теплоёмкость: расчет количества теплоты. Конвертер удельной теплоёмкости

Количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

удельная теплоёмкость - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH …

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ - физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см.). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость - savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

См. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость - удельная теплота … Cловарь химических синонимов I

удельная теплоёмкость газа - — Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти - — Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Книги

  • Физические и геологические основы изучения движения вод в глубоких горизонтах , Трушкин В.В.. В целом книга посвящена закону авторегулирования температуры воды с вмещающим телом, открытому автором в 1991 г. В начале книги проведен обзор состояния изученностипроблемы движения глубоких…

Приборы и принадлежности, используемые в работе:

2. Разновесы.

3. Термометр.

4. Калориметр.

6. Калориметрическое тело.

7. Плитка бытовая.

Цель работы:

Научиться опытным путем определять удельную теплоемкость вещества.

I. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ.

Теплопроводность - передача теплоты от более нагретых частей тела к менее нагретым в следствии столкновений быстрых молекул с медленными, в результате этого быстрые молекулы передают часть своей энергии медленным.

Изменение внутренней энергии какого- либо тела прямо пропорционально его массе и изменению температуры тела.

DU = cmDT (1)
Q = cmDT (2)

Величина с, характеризующая зависимость изменения внутренней энергии тела при нагревании или охлаждении от рода вещества и внешних условий называется удельной теплоемкостью тела.

(4)

Величина C, характеризующая зависимость тела поглощать теплоту при нагревании и равная отношению количества теплоты сообщенной телу, к приращению его температуры, называется теплоемкостью тела .

C = c × m. (5)
(6)
Q = CDT (7)

Молярной теплоемкостью C m , называют количество теплоты, которое необходимо для нагревания одного моля вещества на 1 Кельвин

C m = сM. (8)
C m = (9)

Удельная теплоемкость зависит от характера процесса, при котором происходит его нагревание.

Уравнение теплового баланса.

При теплообмене суммы количеств теплоты, отданных всеми телами, у которых внутренняя энергия уменьшается, равна сумме количеств теплоты, полученных всеми телами, у которых внутренняя энергия увеличивается.

SQ отд = SQ получ (10)

Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных и отданных количеств теплоты равна 0.

SQ отд + SQ получ = 0.

Пример:

В теплообмене участвуют тело, калориметр, жидкость. Тело отдает теплоту, калориметр и жидкость принимают.

Q т = Q к + Q ж

Q т = c т m т (T 2 – Q)

Q к = c к m к (Q – T 1)

Q ж = c ж m ж (Q – T 1)

Где Q(тау) – общая конечная температура.

с т m т (T 2 -Q) = с к m к (Q- T 1) + с ж m ж (Q- T 1)

с т = ((Q - Т 1)*(с к m к + с ж m ж)) / m т (Т 2 - Q)

Т = 273 0 + t 0 С

2. ХОД РАБОТЫ.

ВСЕ ВЗВЕШИВАНИЯ ПРОВОДИТЬ С ТОЧНОСТЬЮ ДО 0,1 г.

1. Определите взвешиванием массу внутреннего сосуда, калори­метра m 1 .

2. Налейте во внутренний сосуд калориметра воды, взвесьте внутренний стакан вместе с налитой жидкостью m к.

3. Определите массу налитой воды m = m к - m 1

4. Поместите внутренний сосуд калориметра во внешний и измерь­те начальную температуру воды Т 1 .

5. Выньте из кипящей воды испытуемое тело, быстро перенесите его в калориметр, определив Т 2 -начальную температуру тела, она равна температуре кипящей воды.


6. Перемешивая жидкость в калориметре, выждите, когда перестанет повышаться температура: измерьте окончательную (установившуюся) температуру Q.

7. Выньте из калориметра испытуемое тело, высушите его фильтро­вальной бумагой и взвешиванием на весах определите его массу m 3 .

8. Результаты всех измерений и вычислений занесите в таблицу. Вычисления производить до второго знака после запятой.

9. Составьте уравнение теплового баланса и найдите из него удельную теплоемкость вещества с .

10. По полученным результатам в приложении определить вещество.

11. Вычислите абсолютную и относительную погрешность полученного результата относительно табличного результата по формулам:

;

12. Вывод о проделанной работе.

ТАБЛИЦА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ

На сегодняшнем уроке мы введем такое физическое понятие как удельнаятеплоемкость вещества. Узнаем, что она зависит от химических свойств вещества, а ее значение, которое можно найти в таблицах, различно для различных веществ. Затем выясним единицы измерения и формулу нахождения удельной теплоемкости, а также научимся анализировать тепловые свойства веществ по значению их удельной теплоемкости.

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты , выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание. Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение.

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «vactekh-holod.ru» ()

Домашнее задание

Теплоемкость - это способность поглощать некоторые объемы тепла во время нагревания или отдавать при охлаждении. Теплоемкость тела - это отношение бесконечно малого числа теплоты, что получает тело, к соответствующему приросту его температурных показателей. Величина измеряется в Дж/К. На практике применяют немного другую величину - удельную теплоемкость.

Определение

Что означает удельная теплоемкость? Это величина, относящаяся к единичному количеству вещества. Соответственно, численность вещества можно измерить в кубометрах, килограммах или даже в молях. От чего это зависит? В физике теплоемкость зависит напрямую от того, к какой количественной единице она относиться, а значит, различают молярную, массовую и объемную теплоемкость. В строительной сфере вы не будете встречаться с молярными измерениями, но с другими - сплошь и рядом.

Что влияет на удельную теплоемкость?

Что такое теплоемкость, вы знаете, но вот какие значения влияют на показатель, еще не ясно. На значение удельной теплоемкости напрямую воздействуют несколько компонентов: температура вещества, давление и иные термодинамические характеристики.

Во время роста температуры продукции его удельная теплоемкость растет, однако определенные вещества отличаются совершенно нелинейной кривой в этой зависимости. Например, с возрастанием температурных показателей с нуля до тридцати семи градусов удельная теплоемкость воды начинает понижаться, а если предел будет находиться между тридцатью семью и ста градусами, то показатель, наоборот, возрастет.

Стоит отметить, что параметр зависит еще и от того, каким образом разрешается изменяться термодинамическим характеристикам продукции (давлению, объему и так далее). Например, удельная теплоемкость при стабильном давлении и при стабильном объеме будут отличаться.

Как рассчитать параметр?

Вас интересует, чему равна теплоемкость? Формула расчета следующая: С=Q/(m·ΔT). Что это за значения такие? Q - это количество теплоты, что получает продукция при нагреве (или же выделяемое продукцией во время охлаждения). m - масса продукции, а ΔT - разность окончательной и начальной температур продукции. Ниже приведена таблица теплоемкости некоторых материалов.

Что можно сказать о вычислении теплоемкости?

Вычислить теплоемкость - это задача не из самых простых, особенно если применять исключительно термодинамические методы, точнее это невозможно сделать. Потому физики используют методы статистической физики или же знания микроструктуры продукции. Как произвести вычисления для газа? Теплоемкость газа рассчитывается из вычисления средней энергии теплового движения отдельно взятых молекул в веществе. Движения молекул могут быть поступательного и вращательного типа, а внутри молекулы может быть целый атом или колебание атомов. Классическая статистика говорит, что на каждую степень свободы вращательных и поступательных движений приходится в мольной величина, что равняется R/2, а на каждую колебательную степень свободы значение равняется R. Это правило еще именуют законом равнораспределения.

При этом частичка одноатомного газа отличается всего тремя поступательными степенями свободы, а потому его теплоемкость должна приравниваться к 3R/2, что отлично согласуется с опытом. Каждая молекула двухатомного газа отличается тремя поступательными, двумя вращательными и одной колебательной степенями свободы, а значит, закон равнораспределения будет равняться 7R/2, а опыт показал, что теплоемкость моля двухатомного газа при обычной температуре составляет 5R/2. Почему оказалось такое расхождение теории? Все связано с тем, что при установлении теплоемкости потребуется учитывать разные квантовые эффекты, другими словами, пользоваться квантовой статистикой. Как видите, теплоемкость - это довольно-таки сложное понятие.

Квантовая механика говорит, что любая система частичек, что совершают колебания или же вращения, в том числе и молекула газа, может иметь определенные дискретные значения энергии. Если же энергия теплового движения в установленной системе недостаточна для возбуждения колебаний необходимой частоты, то данные колебания не вносят вклада в теплоемкость системы.

В твердых телах тепловое движение атомов являет собой слабые колебания поблизости определенных положений равновесия, это касается узлов кристаллической решетки. Атом обладает тремя колебательными степенями свободы и по закону мольная теплоемкость твердого тела приравнивается к 3nR, где n- количество имеющихся атомов в молекуле. На практике это значение является пределом, к которому стремится теплоемкость тела при высоких температурных показателях. Значение достигается при обычных температурных изменениях у многих элементов, это касается металлов, а также простых соединений. Также определяется теплоемкость свинца и других веществ.

Что можно сказать о низких температурах?

Мы уже знаем, что такое теплоемкость, но если говорить о низких температурах, то как значение будет рассчитываться тогда? Если речь идет о низких температурных показателях, то теплоемкость твердого тела тогда оказывается пропорциональной T 3 или же так называемый закон теплоемкости Дебая. Главный критерий, позволяющий отличить высокие показатели температуры от низких, является обычное сравнение их с характерным для определенного вещества параметром - это может быть характеристическая или температура Дебая q D . Представленная величина устанавливается спектром колебания атомов в продукции и существенно зависит от кристаллической структуры.

У металлов определенный вклад в теплоемкость дают электроны проводимости. Данная часть теплоемкости высчитывается с помощью статистики Ферми-Дирака, в которой учитываются электроны. Электронная теплоемкость металла пропорциональная обычной теплоемкости, представляет собой сравнительно небольшую величину, а вклад в теплоемкость металла она вносит только при температурных показателях, близких к абсолютному нулю. Тогда решеточная теплоемкость становится очень маленькой, и ею можно пренебречь.

Массовая теплоемкость

Массовая удельная теплоемкость - это количество теплоты, что требуется поднести к единице массы вещества, дабы нагреть продукт на единицу температуры. Обозначается данная величина буквой С и измеряется она в джоулях, поделенных на килограмм на кельвин - Дж/(кг·К). Это все, что касается теплоемкости массовой.

Что такое объемная теплоемкость?

Объемная теплоемкость - это определенное количество теплоты, что требуется подвести к единице объема продукции, дабы нагреть ее на единицу температуры. Измеряется данный показатель в джоулях, поделенных на кубический метр на кельвин или Дж/(м³·К). Во многих строительных справочниках рассматривают именно массовую удельную теплоемкость в работе.

Применение на практике теплоемкости в строительной сфере

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Примеры теплоаккумуляторов в жизни

Что это может быть? К примеру, какие-то внутренние кирпичные стены, большая печь или камин, стяжки из бетона.

Мебель в любом доме или квартире является отличным теплоаккумулятором, ведь фанера, ДСП и дерево фактически в три раза больше могут запасаться теплом лишь на килограмм веса, нежели пресловутый кирпич.

Есть ли недостатки в теплоаккумуляторах? Конечно, главный минус данного подхода состоит в том, что теплоаккумулятор требуется проектировать еще на стадии создания макета каркасного дома. Все из-за того, что он отличается большим весом, и это потребуется учесть при создании фундамента, а после еще представить, как данный объект будет интегрирован в интерьер. Стоит сказать, что учитывать придется не только массу, потребуется оценивать в работе обе характеристики: массу и теплоемкость. К примеру, если применять золото с невероятным весом в двадцать тонн на кубометр в качестве теплоаккумулятора, то продукция будет функционировать как нужно лишь на двадцать три процента лучше, нежели бетонный куб, вес которого составляет две с половиной тонны.

Какое вещество больше всего подходит для теплоаккумулятора?

Наилучшим продуктом для теплоаккумулятора является совсем не бетон и кирпич! Неплохо с этой задачей справляется медь, бронза и железо, но они очень тяжелые. Как ни странно, но лучший теплоаккумулятор - вода! Жидкость имеет внушительную теплоемкость, самую большую среди доступных нам веществ. Больше теплоемкость только у газов гелия (5190 Дж/(кг·К) и водорода (14300 Дж/(кг·К), но их проблематично применять на практике. При желании и необходимости смотрите таблицу теплоемкости нужных вам веществ.

Удельная теплоемкость является характеристикой вещества. То есть у разных веществ она различна. Кроме того, одно и то же вещество, но в разных агрегатных состояниях обладает разной удельной теплоемкостью. Таким образом, правильно говорить об удельной теплоемкости вещества (удельная теплоемкость воды, удельная теплоемкость золота, удельная теплоемкость древесины и т. д.).

Удельная теплоемкость конкретного вещества показывает, сколько тепла (Q) надо ему передать, чтобы нагреть 1 килограмм этого вещества на 1 градус Цельсия. Удельную теплоемкость обозначают латинской буквой c . То есть, c = Q/mt. Учитывая, что t и m равны единице (1 кг и 1 °C), то удельная теплоемкость численно равна количеству теплоты.

Однако теплота и удельная теплоемкость имеют разные единицы измерения. Теплота (Q) в системе Си измеряется в Джоулях (Дж). А удельная теплоемкость - в Джоулях, деленных на килограмм, умноженный на градус Цельсия: Дж/(кг · °C).

Если удельная теплоемкость какого-то вещества равна, например, 390 Дж/(кг · °C), то это значит, что если 1 кг этого вещества нагреется на 1 °C, то оно поглотит 390 Дж тепла. Или, другими словами, чтобы нагреть 1 кг этого вещества на 1 °C, ему надо передать 390 Дж тепла. Или, если 1 кг этого вещества охладится на 1 °C, то оно отдаст 390 Дж тепла.

Если же на 1 °C нагревается не 1, а 2 кг вещества, то ему надо передать в два раза больше тепла. Так для примера выше это уже будет 780 Дж. То же самое будет, если нагреть на 2 °C 1 кг вещества.

Удельная теплоемкость вещества не зависит от его начальной температуры. То есть если например, жидкая вода имеет удельную теплоемкость 4200 Дж/(кг · °C), то нагревание на 1 °C хоть двадцатиградусной, хоть девяностоградусной воды одинаково потребует 4200 Дж тепла на 1 кг.

А вот лед имеет удельную теплоемкость отличную от жидкой воды, почти в два раза меньше. Однако, чтобы и его нагреть на 1 °C потребуется одинаковое количество теплоты на 1 кг, независимо от его начальной температуры.

Удельная теплоемкость также не зависит от формы тела, которое изготовлено из данного вещества. Стальной брусок и стальной лист, имеющие одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. У листа поверхность больше, чем у бруска, а значит, лист больше отдает тепла, и поэтому быстрее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость - это характеристика вещества, но не тела.

Итак, удельная теплоемкость у разных веществ различна. Это значит, что если даны различные вещества одинаковой массы и с одинаковой температурой, то чтобы нагреть их до другой температуры, им надо передать разное количество тепла. Например, килограмму меди потребуется тепла примерно в 10 раз меньше, чем воде. То есть у меди удельная теплоемкость примерно в 10 раз меньше, чем у воды. Можно сказать, что в «медь помещается меньше тепла».

Количество теплоты, которое надо передать телу, чтобы нагреть его от одной температуры до другой, находят по следующей формуле:

Q = cm(t к – t н)

Здесь t к и t н - конечная и начальная температуры, m - масса вещества, c - его удельная теплоемкость. Удельную теплоемкость обычно берут из таблиц. Из этой формулы можно выразить удельную теплоемкость.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...