Линзы. Фокусное расстояние линз. Оптическая сила линз. Формула тонкой линзы. Тонкая линза: формула и вывод формулы. Решение задач с формулой тонкой линзы

Фокусное расстояние линзы зависит от степени кривизны её поверхности. Линза с более выпуклыми поверхностями преломляет лучи сильнее, чем линза с менее выпуклыми поверхностями, и поэтому обладает меньшим фокусным расстоянием.

Для определения фокусного расстояния собирающей линзы необходимо направить на неё солнечные лучи и, получив на экране за линзой резкое изображение Солнца, измерить расстояние от линзы до этого изображения. Поскольку лучи ввиду чрезвычайной удаленности Солнца будут падать на линзу практически параллельным пучком, то это изображение будет располагаться почти в фокусе линзы.

Физическая величина, обратная фокусному расстоянию линзы, называется оптической силой линзы (D):

D=1

Чем меньше фокусное расстояние линзы, тем больше её оптическая сила, т.е. тем сильнее она преломляет лучи. Ед. изм. (м -1) . Иначе эта единица называется диоптрией (дптр).

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

У собирающих и рассеивающих линз оптические силы отличаются знаком.

Собирающие линзы обладают действительным фокусом, поэтому их фокусное расстояние и оптическая сила считаются положительными (F>0, D>0).

Рассеивающие линзы обладают мнимым фокусом, поэтому их фокусное расстояние и оптическая сила считаются отрицательными (F<0, D<0).

Многие оптические приборы состоят из нескольких линз. Оптическая сила системы нескольких близкорасположенных линз равна сумме оптических сил всех линз этой системы. Если имеются две линзы с оптическими силами D 1 и D 2 , тоих общая оптическая сила будет равна: D= D 1 + D 2

Складываются лишь оптические силы, фокусное расстояние нескольких линз не совпадает с суммой фокусных расстояний отдельных линз.

При помощи линз можно не только собирать и рассеивать лучи света, но и получать разнообразные изображения предметов. Для построения изображения в линзах достаточно построения хода двух лучей: один проходит через оптический центр линзы без преломления, второй - луч, параллельный главной оптической оси.

1. Предмет находится между линзой и фокусом:

Изображение – увеличенное, мнимое, прямое. Такие изображения получают при пользовании лупой

2. Предмет находиться между фокусом и двойным фокусом

Изображение - действительное, увеличенное, перевернутое. Такие изображения получают в проекционных аппаратах.

3. Предмет за двойным фокусом

Линза дает уменьшенное, перевернутое, действительное изображение. Такое изображение используется в фотоаппарате.

Рассеивающая линза при любом расположении предмета дает уменьшенное, мнимое, прямое изображение. Она образует расходящийся пучок света


Глаз человека имеет почти шарообразную форму.

Его окружает плотная оболочка, которая называется склерой. Передняя часть склеры прозрачна и называется роговой оболочкой. За роговой оболочкой находится радужная оболочка, которая может быть окрашена у разных людей по-разному. Между роговой и радужной оболочками находится водянистая жидкость.

В радужной оболочке есть отверстие – зрачок, диаметр которого может изменяться в зависимости от освещения. За зрачком расположено прозрачное тело – хрусталик, который похож на двояко-выпуклую линзу. Хрусталик прикреплен мышцами к склере.

За хрусталиком расположено стекловидное тело. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры – глазное дно, покрыто сетчаткой.

Сетчатка состоит из тончайший волокон, которые устилают глазное дно. Они представляют собой разветвленные окончания зрительного нерва.

Свет, падающий на глаз, преломляется на передней поверхности глаза, в роговице, хрусталике и стекловидном теле, благодаря чему на сетчатке образуется действительное, уменьшенное, перевернутое изображение рассматриваемого предмета.

Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное восприятие окружающего мира. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.

Кривизна хрусталика может изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика не велика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна увеличивается.

Расстояние наилучшего видения для нормального глаза равно 25 см. Зрение двумя глазами увеличивает поле зрения, а также позволяет различить, какой предмет находиться ближе, а какой – дальше от нас. Дело в том, что на сетчатках левого и правого глаза получаются отличные друг от друга изображения. Чем ближе предмет, тем заметнее это отличие, оно и создает впечатление разницы в расстояниях. Благодаря зрению двумя глазами мы видим предмет объемным.

У человека с хорошим, нормальным зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Иначе обстоит дело у людей, страдающих близорукостью и дальнозоркостью.

Близорукость – это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удаленных предметов поэтому оказываются на сетчатке нечеткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

Дальнозоркость – это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удаленных предметов на сетчатке при этом снова оказываются нечеткими, расплывчатыми. Поскольку дальнозоркий глаз не способен сфокусировать на сетчатке даже параллельные лучи, то еще хуже он собирает расходящиеся лучи, идущие от близкорасположенных предметов. Поэтому дальнозоркие люди плохо видят т вдали, и вблизи.

Линзами называют прозрачные тела, ограниченные с двух сторон сферическими поверхностями.

Линзы бывают двух типов выпуклыми (собирающими) или вогнутыми (рассеивающими). У выпуклой линзы середина толще чем края, у вогнутой наоборот середина тоньше чем края.
Ось проходящая через центр линзы, перпендикулярная линзе, называется главной оптической осью.


Лучи идущие параллельно главной оптической оси преломляются проходя через линзу и собираются в одной точке, называемой точкой фокуса линзы или просто фокус линзы (для собирающей линзы). В случае рассеивающей линзы, лучи идущие параллельно главной оптической оси рассеиваются и расходятся в сторону от оси, но продолжения этих лучей пересекаются в одной точке, называемой точкой мнимого фокуса.


OF - фокусное расстояние линзы (OF=F просто обозначают буквой F).
Оптическая сила линзы - это величина, обратная ее фокусному расстоянию. , измеряется в диоптриях [дптр].
Например если фокусное расстояние линзы равно 20 см (F=20см=0,2м) то ее оптическая сила D=1/F=1/0,2=5 дптр
Для построения изображения с помощью линзы используют следующие правила:
- луч прошедший через центр линзы не преломляется;
- луч идущий параллельно главной оптической оси преломившись пройдет через точку фокуса;
- луч прошедший через точку фокуса после преломления пойдет параллельно главной оптической оси;

Рассмотрим классические случаи: а) предмет АВ находится за двойным фокусом d>2F.


изображение: действительное, уменьшенное, перевернутое.


изображение: мнимое, уменьшенное, прямое.

Б) предмет АВ находится между фокусом и двойным фокусом F

изображение: действительное, увеличеное, перевернутое.


В) предмет АВ находится между линзой и фокусом d

изображение: мнимое, увеличеное, прямое.


изображение: мнимое, уменьшеное, прямое.

Г) предмет АВ находится на двойном фокусе d=F


изображение: действительное, равное, перевернутое.



где F - фокусное расстояние линзы, d - расстояние от предмета до линзы, f - расстояние от линзы до изображения.


Г - увеличение линзы, h - высота предмета, H - высота изображения.

Задание огэ по физике: С помощью собирающей линзы получено мнимое изображение предмета. Предмет по отношению к линзе расположен на расстоянии
1)меньшем фокусного расстояния
2)равном фокусному расстоянию
3)большем двойного фокусного расстояния
4)большем фокусного и меньшем двойного фокусного расстояния
Решение: Мнимое изображение предмета с помощью собирающей линзы можно получить только в случае когда предмет по отношению к линзе расположен на расстоянии меньшем фокусного расстояния. (см рисунок выше)
Ответ: 1
Задание огэ по физике фипи: На рисунке изображён ход луча, падающего на тонкую линзу с фокусным расстоянием F. Ходу прошедшего через линзу луча соответствует пунктирная линия


Решение: Луч 1 проходит через фокус, значит до этого он шел параллельно главной оптической оси, луч 3 параллелен главной оптической оси, значит до этого он прошел через фокус линзы (слева от линзы), луч 2 находится между ними.
Ответ: 2
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, равном F. Каким будет изображение предмета?
1) прямым, действительным
2) прямым, мнимым
3) перевернутым, действительным
4) изображения не будет
Решение: луч прошедший через точку фокуса попав в линзу идет параллельно главной оптической оси, получить изображения предмета находящегося в точке фокуса невозможно.
Ответ: 4
Задание огэ по физике фипи: Школьник проводит опыты с двумя линзами, направляя на них параллельный пучок света. Ход лучей в этих опытах показан на рисунках. Согласно результатам этих опытов, фокусное расстояние линзы Л 2

1) больше фокусного расстояния линзы Л 1
2) меньше фокусного расстояния линзы Л 1
3) равно фокусному расстоянию линзы Л 1
4) не может быть соотнесено с фокусным расстоянием линзы Л 1
Решение: после прохождения через линзу Л 2 лучи идут параллельно, следовательно фокусы двух линз совпали, из рисунка видно, что фокусное расстояние линзы Л2 меньше фокусного расстояния линзы Л 1
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены предмет S и его изображение S′, полученное с помощью

1) тонкой собирающей линзы, которая находится между предметом и его изображением
2) тонкой рассеивающей линзы, которая находится левее изображения
3) тонкой собирающей линзы, которая находится правее предмета
4) тонкой рассеивающей линзы, которая находится между предметом и его изображением
Решение: соеденив предмет S и его изображение S′ найдем где находится центр линзы, так как изображение S′ выше чем предмет S, значит изображение увеличенное. Собирающая линза дает увеличенное изображение S′. (см выше в теории)
Ответ: 3
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, меньшем 2F и большем F. Какими по сравнению с размерами предмета будут размеры изображения?
1) меньшими
2) такими же
3) большими
4) изображения не будет
Решение: Смотрите выше пункт б) предмет АВ находится между фокусом и двойным фокусом.
Ответ: 3
Задание огэ по физике фипи: После прохождения оптического прибора, закрытого на рисунке ширмой, ход лучей 1 и 2 изменился соответственно на 1" и 2". За ширмой находится

1) собирающая линза
2) рассеивающая линза
3) плоское зеркало
4) плоскопараллельная стеклянная пластина
Решение: лучи, после прохождения оптического прибора, расходятся, а это возможно только после прохождения лучей через рассеивающую линзу.
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены оптическая ось ОО 1 тонкой линзы, предмет А и его изображение А 1 , а также ход двух лучей, участвующих в образовании изображения.

Согласно рисунку фокус линзы находится в точке
1) 1, причём линза является собирающей
2) 2, причём линза является собирающей
3) 1, причём линза является рассеивающей
4) 2, причём линза является рассеивающей
Решение: луч, идущий параллельно главной оптической оси, после прохождения сквозь линзу, преломляется и проходит через точку фокуса. На рисунке видно, что это точка 2 и линза собирающая.
Ответ: 2
Задание огэ по физике фипи: Ученик исследовал характер изображения предмета в двух стеклянных линзах: оптическая сила одной линзы D 1 = –5 дптр, другой D 2 = 8 дптр – и сделал определённые выводы. Из приведённых ниже выводов выберите два правильных и запишите их номера.
1) Обе линзы собирающие.
2) Радиус кривизны сферической поверхности первой линзы равен радиусу кривизны сферической поверхности второй линзы.
3) Фокусное расстояние первой линзы по модулю больше, чем второй.
4) Изображение предмета, созданное и той, и другой линзой, всегда прямое.
5) Изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом.
Решение: Знак минус показывает что первая линза рассеивающая, а вторая собирающая, следовательно изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом. Фокусное расстояние первой линзы по модулю больше, чем фокусное расстояние второй линзы. Из формулы для оптической силы линзы F=1/D, тогда F 1 =0,2 м. F 2 =0,125 м.
Ответ: 35
Задание огэ по физике фипи: В какой из точек будет находиться изображение точечного источника S, создаваемое собирающей линзой с фокусным расстоянием F?

1) 1
2) 2
3) 3
4) 4
Решение:

Ответ: 1
Задание огэ по физике фипи: Может ли двояковыпуклая линза рассеивать пучок параллельных лучей? Ответ поясните.
Решение: Может, если показатель преломления окружающей среды будет больше показателя преломления линзы.
Задание огэ по физике фипи: На рисунке изображены тонкая рассеивающая линза и три предмета: А, Б и В, расположенные на оптической оси линзы. Изображение какого(-их) предмета(-ов) в линзе, фокусное расстояние которой F, будет уменьшенным, прямым и мнимым?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Тонкая рассеивающая линза, всегда дает уменьшенное, прямое и мнимое изображение, при любом расположении предмета.
Ответ: 4
Задание огэ по физике (фипи): Предмет, находящийся между фокусным и двойным фокусным расстоянием линзы, переместили ближе к двойному фокусу линзы. Установите соответствие между физическими величинами и их возможными изменениями при приближении предмета к двойному фокусу линзы.
Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
Решение: Если предмет находится между фокусом и двойным фокусом то его изображение увеличиное и находится за двойным фокусом, при приближении к двойному фокусу размеры будут уменьшаться и изображение станет ближе к линзе, так как, если тело находится на двойном фокусном расстоянии то изображение равно самому себе и находится на двойном фокусе.
Ответ: 22
Задание демонстрационного варианта ОГЭ 2019: На рисунке изображены три предмета: А, Б и В. Изображение какого(-их) предмета(-ов) в тонкой собирающей линзе, фокусное расстояние которой F, будет уменьшенным, перевёрнутым и действительным?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Изображение будет уменьшенным, перевёрнутым и действительным если предмет находится за двойным фокусом d>2F (см. теорию выше). Предмет А находится за двойным фокусом.

Фокусное расстояние является важнейшей колляцией всякий линзы . Впрочем, на самом увеличительном стекле данный параметр традиционно не указан. В большинстве случаев на них обозначают только кратность увеличения, а на линзах без оправы частенько и совсем отсутствует какая-нибудь маркировка.

Вам понадобится

  • Источник света
  • Экран
  • Линейка
  • Карандаш

Инструкция

1. Примитивный метод определения фокусного расстояния линзы – экспериментальный. Расположите источник света на некотором удалении от экрана, заведомо превышающем двойное фокусное расстояние линзы . Параллельно воображаемому отрезку, соединяющему источник света с экраном, приложите линейку. Прислоните линзу к источнику света. Медлительно перемещая ее в направлении экрана, добейтесь возникновения на нем отчетливого изображения источника света. Подметьте на линейке карандашом место, где при этом находится линза.

2. Продолжайте перемещать линзу по направлению к экрану. В определенный момент на экране вновь появится отчетливое изображение источника света. Также подметьте на линейке это расположение линзы .

3. Измерьте расстояние между источником света и экраном. Возведите его в квадрат.

4. Измерьте расстояние между первым и вторым расположениями линзы и также возведите в квадрат.

5. Вычтите из первого итога возведения в квадрат 2-й.

6. Получившееся в итоге вычитания число поделите на учетверенное расстояние между источником света и экраном, и получится фокусное расстояние линзы . Оно будет выражено в тех же единицах, в которых производились измерения. Если это вас не устраивает, переведите его в комфортные для вас единицы.

7. Определить фокусное расстояние рассеивающей линзы напрямую немыслимо. Для этого потребуется добавочная линза – собирающая, причем, ее фокусное расстояние может быть и неведомо.

8. Расположите источник света, экран и линейку так же, как в предыдущем навыке. Потихоньку отодвигая собирающую линзу от источника света, добейтесь отчетливого изображения источника света на экране. Зафиксируйте линзу в этом расположении.

9. Между экраном и собирающей линзой разместите рассеивающую, фокусное расстояние которой вы хотите измерить. Изображение станет расплывчатым, но пока на это не нужно обращать внимание. Измерьте, на каком расстоянии от экрана расположена эта линза.

10. Отодвигайте экран от линзы , пока изображение вновь не станет сосредоточенным. Измерьте новое расстояние от экрана до рассеивающей линзы .

11. Умножьте первое расстояние на второе.

12. Вычтите второе расстояние из первого.

13. Итог умножения поделите на итог вычитания, и получится фокусное расстояние рассеивающей линзы .

Существует два вида линз – собирающие (выпуклые) и рассеивающие (вогнутые). Фокусное расстояние линзы расстояние от линзы до точки, являющейся изображением безмерно удаленного объекта. Проще говоря, это точка, в которой пересекаются параллельные лучи света позже прохождения через линзу.

Вам понадобится

  • Приготовьте линзу, лист бумаги, сантиметровую линейку (25-50 см), источник света (зажженная свеча, фонарь, маленькая настольная лампа).

Инструкция

1. 1-й метод – самый примитивный. Выйдите на освещенное солнцем место. С поддержкой линзы сосредоточьте ясные лучи на лист бумаги. Изменяя расстояние между линзой и бумагой, добейтесь наименьшего размера полученного пятна. Как водится, при этом бумага начинает обугливаться. Расстояние между линзой и листом бумаги в данный момент будет соответствовать фокусному расстоянию линзы .

2. 2-й метод – типичный. Установите источник света на край стола. На иной край, на расстоянии 50-80 см, поставьте импровизированный экран. Сделайте его из стопки книг либо маленький коробки и закрепленного вертикально листа бумаги. Передвигая линзу, добейтесь отчетливого (опрокинутого) изображения источника света на экране. Измерьте расстояния от линзы до экрана и от линзы до источника света. Сейчас расчет. Перемножьте полученные расстояния и поделите на расстояние от экрана до источника света. Полученное число и будет фокусным расстояние м линзы .

3. Для рассеивающей линзы все немножко труднее. Используйте то же оборудование, что и для второго метода с собирающей линзой. Рассеивающую линзу расположите между экраном и собирающей линзой. Перемещайте линзы для приобретения резкого изображения источника света. Собирающую линзу закрепите в этом расположении статично. Измерьте расстояние от экрана до рассеивающей линзы . Подметьте мелом либо карандашом местоположение рассевающей линзы и уберите ее. Приближайте экран к собирающей линзе до тех пор, пока не получите на экране крутое изображение источника света. Измерьте расстояние от экрана до того места, где находилась рассеивающая линза. Перемножьте полученные расстояния и поделите на их разность (из большего вычесть меньшее). Итог готов.

Обратите внимание!
Будьте внимательны при применении источников света. Соблюдайте правила электро- и пожарной безопасности.

Полезный совет
Если все измерения проводятся в миллиметрах, то и полученное фокусное расстояние будет в миллиметрах.

Фокусное расстояние – это расстояние от оптического центра до фокальной плоскости, на которой собираются лучи и формируется изображение. Оно измеряется в миллиметрах. Приобретая камеру, неукоснительно необходимо узнать фокусное расстояние объектива, потому что чем оно огромнее, тем мощней объектив увеличивает изображение предмета съемки.

Вам понадобится

  • Калькулятор.

Инструкция

1. 1-й метод. Фокусное расстояние дозволено обнаружить с поддержкой формулы тонкой линзы: 1/расстояние от линзы до предмета+1/расстояние от линзы до изображения=1/главное фокусное расстояние линзы. Из данной формулы выразите основное фокусное расстояние линзы. У вас должна получиться дальнейшая формула: основное фокусное расстояние линзы=расстояние от линзы до изображения*расстояние от линзы до предмета/(расстояние от линзы до изображения+расстояние от линзы до предмета). Сейчас сосчитайте неведомую вам величину с поддержкой калькулятора.

2. Если перед вами не тонкая, а толстая линза, то формула остается без метаморфозы, но расстояния отсчитываются не от центра линзы, а от основных плоскостей. Для действительного изображения от действительного предмета в собирающей линзе фокусное расстояние принимайте, как величину правильную. Если же линза рассеивающая – фокусное расстояние негативно.

3. 2-й метод. Фокусное расстояние дозволено обнаружить с поддержкой формулы масштаба изображения: масштаб=фокусное расстояние линзы/(расстояние от линзы до изображения-фокусное расстояние линзы) либо масштаб=(расстояние от линзы до изображения-фокусное расстояние линзы)/фокусное расстояние линзы. Выразив из данной формулы фокусное расстояние, вы легко его сосчитаете.

4. 3-й метод. Фокусное расстояние дозволено обнаружить с поддержкой формулы оптической силы линзы: оптическая сила линзы=1/фокусное расстояние. Выразим из данной формулы фокусное расстояние: фокусное расстояние=1/оптическую силу. Сосчитайте.

5. Четвертый метод. Если вам дана толщина линзы и увеличение, то, чтоб обнаружить фокусное расстояние, перемножьте их.

6. Сейчас вы знаете, как обнаружить фокусное расстояние. Выбирайте тот либо другой вышеперечисленный метод в зависимости от того, что вам дано, и тогда вы без труда решите поставленную перед вами задачу. Непременно определяйте какая перед вами линза, потому что именно от этого зависит позитивное либо негативное значение имеет фокусное расстояние. И тогда вы решите все без цельной ошибочки.

Рассмотрим теперь, другой случай, имеющий большое практическое значение. Большинство линз, которыми — мы пользуемся, имеет не одну, а две поверхности раздела. К чему это приводит? Пусть имеется стеклянная линза, ограниченная поверхностями с разной кривизной (фиг. 27.5). Рассмотрим задачу о фокусировании пучка света из точки О в точку О’. Как это сделать? Сначала используем формулу (27.3) для первой поверхности, забыв о второй поверхности. Это позволит нам установить, что испускаемый в точке О свет будет казаться сходящимся или расходящимся (в зависимости от знака фокусного расстояния) из некоторой другой точки, скажем О’. Решим теперь вторую часть задачи. Имеется другая поверхность между стеклом и воздухом, и лучи подходят к ней, сходясь к точке О’. Где они сойдутся на самом деле? Снова воспользуемся той же формулой! Находим, что они сойдутся к точке О». Таким образом можно пройти, если необходимо, через 75 поверхностей, последовательно применяя одну и ту же формулу и переходя от одной поверхности к другой!

Имеются еще более сложные формулы, которые могут нам помочь в тех редких случаях нашей жизни, когда нам почему-то нужно проследить путь света через пять поверхностей. Однако если уж это необходимо, то лучше последовательно перебрать пять поверхностей, чем запоминать кучу формул, ведь может случиться, что нам вообще не придется возиться с поверхностями!

Во всяком случае, принцип расчета таков: при переходе через одну поверхность мы находим новое положение, новую точку фокуса и рассматриваем ее как источник для следующей

поверхности и т. д. Часто в системах бывает несколько сортов стекла с разными показателями n 1 , n 2 , … ; поэтому для конкретного решения задачи нам нужно обобщить формулу (27.3) на случай двух разных показателей n 1 , n 2 . Нетрудно показать, что обобщенное уравнение (27.3) имеет вид

Особенно прост случай, когда поверхности близки друг к другу и ошибками из-за конечной толщины можно пренебречь. Рассмотрим линзу, изображенную, на фиг. 27.6, и поставим такой вопрос: каким условиям должна удовлетворять линза, чтобы пучок из О фокусировался в О’? Пусть свет проходит точно через край линзы в точке Р. Тогда (пренебрегая временно толщиной линзы Т с показателем преломления n 2) излишек времени на пути ОРО’ будет равен (n 1 h 2 /2s) + (n 1 h 2 /2s’). Чтобы уравнять время на пути ОРО’ и время на прямолинейном пути, линза должна обладать в центре такой толщиной Т, чтобы она задерживала свет на нужное время. Поэтому толщина линзы T должна удовлетворять соотношению

Можно еще выразить Т через радиусы обеих поверхностей R 1 и R 2 . Учитывая условие 3 (приведенное на стр. 27), мы находим для случая R 1 < R 2 (выпуклая линза)

Отсюда получаем окончательно

Отметим, что, как и раньше, когда одна точка находится на бесконечности, другая будет расположена на расстоянии, которое мы называем фокусным расстоянием f. Величина f определяется равенством

где n = n 2 /n 1 .

В противоположном случае, когда s стремится к бесконечности, s’ оказывается на фокусном расстоянии f’. Для нашей линзы фокусные расстояния совпадают. (Здесь мы встречаемся еще с одним частным случаем общего правила, по которому отношение фокусных расстояний равно отношению показателей преломления тех двух сред, где лучи фокуси-руются. Для нашей оптической системы оба показателя одинаковы, а поэтому фокусные расстояния равны.)

Забудем на время формулу для фокусного. расстояния. Если вы купили линзу с неизвестными радиусами кривизны и каким-то показателем преломления, то фокусное расстояние можно просто измерить, собирая в фокус лучи, идущие от удаленного источника. Зная f, удобнее переписать нашу формулу сразу в терминах фокусного расстояния

Давайте посмотрим теперь, как работает эта формула и что из нее получается в разных случаях. Во-первых, если одно из расстояний s и s’ бесконечно, другое равно f. Это условие означает, что параллельный пучок света фокусируется на расстоянии f и может использоваться на практике для определения f. Интересно также, что обе точки движутся в одну сторону. Если одна идет направо, то и вторая движется в ту же сторону. И наконец, если s и s’ одинаковы, то каждое из них равно 2f.

Собирающая линза — это оптическая система, которая представляет собой подобие сплющенной сферы, у которой толщина краев меньше, чем оптического центра. Для того, чтобы правильно произвести построение изображения в собирающей линзе нужно учитывать несколько важных моментов, которые сыграют ключевую роль как в построении, так и в полученном изображении предмета. Многие современные приборы работают на этих простых принципах, используя свойства собирающей линзы и геометрию построения изображения предмета.

Появилось еще в 20 веке, слово пришло с латыни. Обозначало стекло с выпуклым или вогнутым центром. Спустя небольшой промежуток времени стало активно применяться в физике и получило свое массовое распространение с помощью науки и приборам, которые были сделаны на ее основе. Схема собирающей линзы представляет собой систему из двух сплюснутых у краев полусфер, которые соединены между собой ровной стороной и имеют одинаковый центр.

Фокус собирающей линзы — это место, где все проходящие лучи света пересекаются. Эта точка является очень важной при построении.

Фокусное расстояние собирающей линзы — это не что иное, как отрезок от принятого центра линзы до фокуса.

Из-за того, где именно на оптической оси будет располагаться предмет, который предстоит построить, можно получить несколько типичных вариантов. Первое, что следует рассмотреть, это случай, когда предмет находится прямо на фокусе. В этом случае построить изображение просто не удастся, так как лучи будут идти параллельно друг другу. Поэтому получить решение невозможно. Это своего рода аномалия в построении изображения предмета, которая обосновывается геометрией.

Построение изображения тонкой собирающей линзой не составляет особого труда, если использовать правильный подход и алгоритм, благодаря которому можно получить изображение любого предмета. Для построения изображения предмета достаточно двух основных точек, используя которые не составит труда спроектировать полученное в результате преломления света в собирающей линзе изображение. Стоит отметить главные моменты при построении, без которых невозможно будет обойтись:

  • Линия, проходящая через центр линзы считается лучом, который во время прохождения через линзу изменяет свое направление крайне незначительно
  • Линия, проведенная параллельно ее главной оптической оси, которая после преломления в линзе проходит через фокус собирающей линзы

Обратите внимание, что информация о том, как рассчитывается формула оптической линзы доступна по этому адресу: .

Построение изображения в собирающей линзе фото

Ниже приводим фотографии по теме статьи «Построение изображения в собирающей линзе». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...