Устройство подзорной трубы



План:

    Введение
  • 1 История
  • 2 Характеристики простых линз
  • 3 Ход лучей в тонкой линзе
  • 4 Ход лучей в системе линз
  • 5 Построение изображения тонкой собирающей линзой
  • 6 Формула тонкой линзы
  • 7 Масштаб изображения
  • 8 Расчёт фокусного расстояния и оптической силы линзы
  • 9 Комбинация нескольких линз (центрированная система)
  • 10 Недостатки простой линзы
  • 11 Линзы со специальными свойствами
    • 11.1 Линзы из органических полимеров
    • 11.2 Линзы из кварца
    • 11.3 Линзы из кремния
  • 12 Применение линз
  • Примечания
    Литература

Введение

Плоско-выпуклая линза

Линза (нем. Linse , от лат. lens - чечевица) - деталь из оптически прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, оптически прозрачные пластмассы и другие материалы.

Линзами также называют и другие оптические приборы и явления, которые создают сходный оптический эффект, не обладая указанными внешними характеристиками. Например:

  • Плоские «линзы», изготовленные из материала с переменным коэффициентом преломления, изменяющимся в зависимости от расстояния от центра
  • линзы Френеля
  • зонная пластинка Френеля, использующая явление дифракции
  • «линзы» воздуха в атмосфере - неоднородность свойств, в частности, коэффициента преломления (проявляются в виде мерцания изображения звёзд в ночном небе).
  • Гравитационная линза - наблюдаемый на межгалактических расстояниях эффект отклонения электромагнитных волн массивными объектами.
  • Магнитная линза - устройство, использующее постоянное магнитное поле для фокусирования пучка заряженных частиц (ионов или электронов) и применяющееся в электронных и ионных микроскопах.
  • Изображение линзы, сформированное оптической системой или частью оптической системы. Используется при расчёте сложных оптических систем.

1. История

Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 до н. э.), где с помощью выпуклого стекла и солнечного света добывали огонь.

Из произведений Плиния Старшего (23 - 79) следует, что такой способ разжигания огня был известен и в Римской империи - там также описан, возможно, первый случай применения линз для коррекции зрения - известно, что Нерон смотрел гладиаторские бои через вогнутый изумруд для исправления близорукости.

Сенека (3 до н. э. - 65) описал увеличительный эффект, который даёт стеклянный шар, заполненный водой.

Арабский математик Альхазен (965-1038) написал первый значительный трактат по оптике, описывающий, как хрусталик глаза создаёт изображение на сетчатке. Линзы получили широкое использование лишь с появлением очков примерно в 1280-х годах в Италии.

Сквозь капли дождя, действующие как линзы, видны Золотые Ворота

Растение, видимое через двояковыпуклую линзу


2. Характеристики простых линз

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света, - ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз:
Собирающие :
1 - двояковыпуклая
2 - плоско-выпуклая
3 - вогнуто-выпуклая (положительный мениск)
Рассеивающие :
4 - двояковогнутая
5 - плоско-вогнутая
6 - выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).
Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

Мнимый фокус рассеивающей линзы

Сказанное о фокусе на оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на наклонной линии, проходящей через центр линзы под углом к оптической оси. Плоскость, перпендикулярная оптической оси, расположенная в фокусе линзы, называется фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.


3. Ход лучей в тонкой линзе

Линза, для которой толщина принята равной нулю, в оптике называется «тонкой». Для такой линзы показывают не две главных плоскости, а одну, в которой как бы сливаются вместе передняя и задняя.

Рассмотрим построение хода луча произвольного направления в тонкой собирающей линзе. Для этого воспользуемся двумя свойствами тонкой линзы:

  • Луч, прошедший через оптический центр линзы, не меняет своего направления;
  • Параллельные лучи, проходящие через линзу, сходятся в фокальной плоскости.

Рассмотрим луч SA произвольного направления, падающий на линзу в точке A. Построим линию его распространения после преломления в линзе. Для этого построим луч OB, параллельный SA и проходящий через оптический центр O линзы. По первому свойству линзы луч OB не изменит своего направления и пересечёт фокальную плоскость в точке B. По второму свойству линзы параллельный ему луч SA после преломления должен пересечь фокальную плоскость в той же точке. Таким образом, после прохождения через линзу луч SA пойдёт по пути AB.

Аналогичным образом можно построить другие лучи, например луч SPQ.

Обозначим расстояние SO от линзы до источника света через u, расстояние OD от линзы до точки фокусировки лучей через v, фокусное расстояние OF через f. Выведем формулу, связывающую эти величины.

Рассмотрим две пары подобных треугольников: 1) SOA и OFB; 2) DOA и DFB. Запишем пропорции

Разделив первую пропорцию на вторую, получим

После деления обоих частей выражения на v и перегруппировки членов, приходим к окончательной формуле

где - фокусное расстояние тонкой линзы.


4. Ход лучей в системе линз

Ход лучей в системе линз строится теми же методами, что и для одиночной линзы.

Рассмотрим систему из двух линз, одна из которых имеет фокусное расстояние OF, а вторая O 2 F 2 . Строим путь SAB для первой линзы и продолжаем отрезок AB до вхождения во вторую линзу в точке C.

Из точки O 2 строим луч O 2 E, параллельный AB. При пересечении с фокальной плоскостью второй линзы этот луч даст точку E. Согласно второму свойству тонкой линзы луч AB после прохождения через вторую линзу пойдёт по пути BE. Пересечение этой линии с оптической осью второй линзы даст точку D, где сфокусируются все лучи, вышедшие из источника S и прошедшие через обе линзы.


5. Построение изображения тонкой собирающей линзой

При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа - через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.

Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.

Три луча, исходящие из точки A, пройдут через линзу и пересекутся в соответствующих точках схода на A 1 B 1 , образуя изображение. Полученное изображение является действительным и перевёрнутым .

В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.

Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным , перевёрнутым и уменьшенным до подобия точки.

Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным , перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.

Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным , перевёрнутым и равным по величине предмету.

Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным , перевёрнутым и увеличенным .

Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.

Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое , прямое и увеличенное , т. е. в данном случае линза работает как лупа.

Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.

Эта закономерность имеет большое значение в практике различных видов фотографических работ, поэтому для определения зависимости между расстоянием от предмета до линзы и от линзы до плоскости изображения необходимо знать основную формулу линзы .


6. Формула тонкой линзы

Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями.

Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы (открытой Исааком Барроу):

где - расстояние от линзы до предмета; - расстояние от линзы до изображения; - главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей.

Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:

Следует отметить, что знаки величин u , v , f выбираются исходя из следующих соображений - для действительного изображения от действительного предмета в собирающей линзе - все эти величины положительны. Если изображение мнимое - расстояние до него принимается отрицательным, если предмет мнимый - расстояние до него отрицательно, если линза рассеивающая - фокусное расстояние отрицательно.

Изображения чёрных букв через тонкую выпуклую линзу с фокусным расстоянием f (отображаются красным цветом). Показаны лучи для букв E, I и K (синим, зеленым и оранжевым соответственно). Размеры реального и перевернутого изображения E (2f) одинаковы. Образ I (f) - в бесконечности. К (при f/2) имеет двойной размер виртуального и прямого изображения


7. Масштаб изображения

Масштабом изображения () называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где - расстояние от линзы до изображения; - расстояние от линзы до предмета.

Здесь есть коэффициент уменьшения, т. е. число, показывающее во сколько раз линейные размеры изображения меньше действительных линейных размеров предмета.

В практике вычислений гораздо удобнее это соотношение выражать в значениях или , где - фокусное расстояние линзы.


8. Расчёт фокусного расстояния и оптической силы линзы

Значение фокусного расстояния для линзы может быть рассчитано по следующей формуле:

, где

Коэффициент преломления материала линзы,

Расстояние между сферическими поверхностями линзы вдоль оптической оси, также известное как толщина линзы , а знаки при радиусах считаются положительными, если центр сферической поверхности лежит справа от линзы и отрицательными, если слева. Если пренебрежительно мало, относительно её фокусного расстояния, то такая линза называется тонкой , и её фокусное расстояние можно найти как:

где R>0 если центр кривизны находится справа от главной оптической оси; R<0 если центр кривизны находится слева от главной оптической оси. Например, для двояковыпуклой линзы будет выполняться условие 1/F=(n-1)(1/R1+1/R2)

(Эту формулу также называют формулой тонкой линзы .) Величина фокусного расстояния положительна для собирающих линз, и отрицательна для рассеивающих. Величина называется оптической силой линзы. Оптическая сила линзы измеряется в диоптриях , единицами измерения которых являются м −1 .

Указанные формулы могут быть получены аккуратным рассмотрением процесса построения изображения в линзе с использованием закона Снелла, если перейти от общих тригонометрических формул к параксиальному приближению.

Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света - слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям, величина которых зависит от того, какой стороной линза повёрнута к свету.


9. Комбинация нескольких линз (центрированная система)

Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):

.

Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:

,

где - расстояние между главными плоскостями линз.


10. Недостатки простой линзы

В современной фотоаппаратуре к качеству изображения предъявляются высокие требования.

Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему - объектив. Изображения, полученные при помощи простых линз, имеют различные недостатки. Недостатки оптических систем называются аберрациями, которые делятся на следующие виды:

  • Геометрические аберрации
    • Сферическая аберрация;
    • Кома;
    • Астигматизм;
    • Дисторсия;
    • Кривизна поля изображения;
  • Хроматическая аберрация;
  • Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).

11. Линзы со специальными свойствами

11.1. Линзы из органических полимеров

Полимеры дают возможность создавать недорогие асферические линзы с помощью литья.

Линзы контактные

В области офтальмологии созданы мягкие контактные линзы. Их производство основано на применении материалов, имеющих бифазную природу, сочетающих фрагменты кремний-органического или кремний-фторорганического полимера силикона и гидрофильного полимера гидрогеля. Работа в течение более 20 лет привела к созданию в конце 90-х годов силикон-гидрогелевых линз, которые благодаря сочетанию гидрофильных свойств и высокой кислородопроницаемости могут непрерывно использоваться в течение 30 дней круглосуточно.


11.2. Линзы из кварца

Кварцевое стекло - переплавленный чистый кремнезём с незначительными (около 0,01 %) добавками Al 2 О 3 , СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой кислоты.

Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые и видимые лучи света.

11.3. Линзы из кремния

Кремний сочетает сверхвысокую дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4 в диапазоне ИК-излучения и полной непрозрачностью в видимом диапазоне спектра.

Кроме того, именно свойства кремния и новейшие технологии его обработки позволили создать линзы для рентгеновского диапазона электромагнитных волн.

12. Применение линз

Линзы являются универсальным оптическим элементом большинства оптических систем.

Традиционное применение линз - бинокли, телескопы, оптические прицелы, теодолиты, микроскопы и фотовидеотехника. Одиночные собирающие линзы используются как увеличительные стёкла.

Другая важная сфера применения линз офтальмология, где без них невозможно исправление недостатков зрения - близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы.

В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели.

В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).


Примечания

  1. Наука в Сибири - www.nsc.ru/HBC/hbc.phtml?15 320 1
  2. линзы из кремния для ИК диапазона - www.optotl.ru/mat/Si#2
  3. .
    Текст доступен по лицензии Creative Commons Attribution-ShareAlike .

Двояковыпуклая линза

Плоско-выпуклая линза

Характеристики тонких линз

В зависимости от форм различают собирательные (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием .

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света , - ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления , коффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз:
Собирающие :
1 - двояковыпуклая
2 - плоско-выпуклая
3 - вогнуто-выпуклая (положительный мениск)
Рассеивающие :
4 - двояковогнутая
5 - плоско-вогнутая
6 - выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине) или рассеивающей (утолщается к краям). Мениск, у которого радиусы поверхностей равны, имеет оптическую силу, равную нулю (применяется для коррекции дисперсии или как покровная линза). Так, линзы очков для близоруких - как правило, отрицательные мениски.

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Основные элементы линзы: NN - главная оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).
Примечание . Ход лучей показан, как в идеализированной (плоской) линзе, без указания на преломление на реальной границе раздела фаз. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись , а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса , или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется главным фокусом F’, а расстояние от центра линзы до главного фокуса - главным фокусным расстоянием .

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

Мнимый фокус рассеивающей линзы

Сказанное о фокусе на главной оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на побочной или наклонной оптической оси, т. е. линии, проходящей через центр линзы под углом к главной оптической оси. Плоскость, перпендикулярная главной оптической оси, расположенная в главном фокусе линзы, называется главной фокальной плоскостью , а в сопряжённом фокусе - просто фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от центра линзы.

Построение изображения тонкой собирающей линзой

При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа - через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.

Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.

Три луча, исходящие из точки A, пройдут через линзу и пересекутся в соответствующих точках схода на A 1 B 1 , образуя изображение. Полученное изображение является действительным и перевёрнутым .

В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.

Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным , перевёрнутым и уменьшенным до подобия точки.

Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным , перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.

Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным , перевёрнутым и равным по величине предмету.

Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным , перевёрнутым и увеличенным .

Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.

Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое , прямое и увеличенное , т. е. в данном случае линза работает как лупа.

Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.

Эта закономерность имеет большое значение в практике различных видов фотографических работ, поэтому для определения зависимости между расстоянием от предмета до линзы и от линзы до плоскости изображения необходимо знать основную формулу линзы .

Формула тонкой линзы

Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями .

Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы :

где - расстояние от линзы до предмета; - расстояние от линзы до изображения; - главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей .

Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:

Следует отметить, что знаки величин u , v , f выбираются исходя из следующих соображений - для действительного изображения от действительного предмета в собирающей линзе - все эти величины положительны. Если изображение мнимое - расстояние до него принимается отрицательным, если предмет мнимый - расстояние до него отрицательно, если линза рассеивающая - фокусное расстояние отрицательно.

Масштаб изображения

Масштабом изображения () называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где - расстояние от линзы до изображения; - расстояние от линзы до предмета.

Здесь есть коэффициент уменьшения, т. е. число, показывающее во сколько раз линейные размеры изображения меньше действительных линейных размеров предмета.

В практике вычислений гораздо удобнее это соотношение выражать в значениях или , где - фокусное расстояние линзы.

.

Расчёт фокусного расстояния и оптической силы линзы

Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света - слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям , величина которых зависит от того, какой стороной линза повёрнута к свету.

Комбинация нескольких линз (центрированная система)

Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):

.

Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:

,

где - расстояние между главными плоскостями линз.

Недостатки простой линзы

В современной фотоаппаратуре к качеству изображения предъявляются высокие требования.

Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему - объектив . Изображения, полученные при помощи простых линз, имеют различные недостатки. Недостатки оптических систем называются аберрациями , которые делятся на следующие виды:

  • Геометрические аберрации
  • Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).

Линзы со специальными свойствами

Линзы из органических полимеров

Линзы контактные

Видеоурок 2: Рассеивающая линза - Физика в опытах и экспериментах


Лекция: Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы

Линза. Виды линз

Как известно, все физические явления и процессы используются при проектировании техники и иного оборудования. Преломление света не является исключением. Данное явление получило применение при изготовлении камер, биноклей, а также человеческий глаз также является неким оптическим прибором, способным изменять ход лучей. Для этого используется линза.


Линза - это прозрачное тело, которое ограничено с двух сторон сферами.

В школьном курсе физики рассматриваются линзы, выполненные из стекла. Однако, могут использоваться и другие материалы.

Существует несколько основных видов линз, выполняющих определенные функции.

Двояковыпуклая линза


Если линзы выполнены из двух выпуклых полусфер, то они называются двояковыпуклыми. Давайте рассмотрим, как ведут себя лучи при прохождении через такую линзу.


На рисунке A 0 D - это основная оптическая ось. Это луч, что проходит через центр линзы. Относительно данной оси линза симметрична. Все остальные лучи, что проходят через центр, называются побочными осями, относительно их симметрия не наблюдается.

Рассмотрим падающий луч АВ , который из-за перехода в другую среду преломляется. После того, как преломленный луч касается второй стенки сферы, он преломляется еще раз до пересечения с главной оптической осью.


Отсюда можно сделать вывод, что если некоторый луч шел параллельно главной оптической оси, то после прохождения через линзу он пересечет главную оптическую ось.


Все лучи, которые находятся неподалеку от оси, пересекаются в одной точке, создавая пучок. Те лучи, что далеки от оси, пересекаются в месте, находящемся ближе к линзе.

Явление, при котором лучи собираются в одной точке, называется фокусировкой , а точка фокусировки - это фокус .


Фокус (фокусное расстояние) обозначается на рисунке буквой F .

Линза, в которой лучи собираются в одной точке за ней, называется собирающей. То есть двояковыпуклая линза является собирающей .

Любая линза имеет два фокуса - они находятся перед линзой и за ней.


Двояковогнутая линза


Линза, выполненная из двух вогнутых полусфер, называется двояковогнутой .


Как видно из рисунка, лучи, попавшие на такую линзу, преломляются, и на выходе не пересекают ось, а наоборот, стремятся от нее.

Отсюда можно сделать вывод, что такая линза рассеивает, и поэтому называется рассеивающей .

Если лучи, что рассеялись, продолжить перед линзой, то они соберутся в одной точке, которая называется мнимым фокусом .


Собирающие и рассеивающие линзы могут принимать и другие виды, что указаны на рисунках.


1 - двояковыпуклая;

2 - плосковыпуклая;

3 - вогнуто-выпуклая;

4 - двояковогнутая;

5 - плосковогнутая;

6 - выпукло-вогнутая.


В зависимости от толщины линзы, она может либо сильнее, либо слабее преломлять лучи. Чтобы определить, насколько сильно преломляет линза, ввели величину, которая называется оптической силой .

D - оптическая сила линзы (или системы линз);

F - фокусное расстояние линзы (или системы линз).

[D] = 1 дптр . Единицей оптической силы линзы является диоптрия (м -1).

Тонкая линза


При изучении линз мы будем пользоваться понятием тонкой линзы.

Итак, рассмотрим рисунок, на котором изображена тонкая линза. Так вот тонкой линзой называется та, у которой толщина достаточно мала. Однако, для физических законов недопустима неопределенность, поэтому термин "достаточно" использовать рискованно. Считается, что линзу можно назвать тонкой в том случае, когда толщина меньше, чем радиусы двух сферических поверхностей.

Темы кодификатора ЕГЭ: линзы

Преломление света широко используется в различных оптических приборах: фотоаппаратах, биноклях, телескопах, микроскопах. . . Непременной и самой существенной деталью таких приборов является линза.

Линза - это оптически прозрачное однородное тело, ограниченное с двух сторон двумя сферическими (или одной сферической и одной плоской) поверхностями.

Линзы обычно изготавливаются из стекла или специальных прозрачных пластмасс. Говоря о материале линзы, мы будем называть его стеклом - особой роли это не играет.

Двояковыпуклая линза.

Рассмотрим сначала линзу, ограниченную с обеих сторон двумя выпуклыми сферическими поверхностями (рис. 1 ). Такая линза называется двояковыпуклой . Наша задача сейчас - понять ход лучей в этой линзе.

Проще всего обстоит дело с лучом, идущим вдоль главной оптической оси - оси симметрии линзы. На рис. 1 этот луч выходит из точки . Главная оптическая ось перпендикулярна обеим сферическим поверхностям, поэтому данный луч идёт сквозь линзу, не преломляясь.

Теперь возьмём луч , идущий параллельно главной оптической оси. В точке падения
луча на линзу проведена нормаль к поверхности линзы; поскольку луч переходит из воздуха в оптически более плотное стекло, угол преломления меньше угла падения . Следовательно, преломлённый луч приближается к главной оптической оси.

В точке выхода луча из линзы также проведена нормаль . Луч переходит в оптически менее плотный воздух, поэтому угол преломления больше угла падения ; луч
преломляется опять-таки в сторону главной оптической оси и пересекает её в точке .

Таким образом, всякий луч, параллельный главной оптической оси, после преломления в линзе приближается к главной оптической оси и пересекает её. На рис. 2 изображена картина преломления достаточно широкого светового пучка, параллельного главной оптической оси.

Как видим, широкий пучок света не фокусируется линзой: чем дальше от главной оптической оси расположен падающий луч, тем ближе к линзе он пересекает главную оптическую ось после преломления. Это явление называется сферической аберрацией и относится к недостаткам линз - ведь хотелось бы всё же, чтобы линза сводила параллельный пучок лучей в одну точку.

Весьма приемлемой фокусировки можно добиться, если использовать узкий световой пучок, идущий вблизи главной оптической оси. Тогда сферическая аберрация почти незаметна - посмотрите на рис. 3 .

Хорошо видно, что узкий пучок, параллельный главной оптической оси, после прохождения линзы собирается приблизительно в одной точке . По этой причине наша линза носит название собирающей.

Точка называется фокусом линзы. Вообще, линза имеет два фокуса, находящиеся на главной оптической оси справа и слева от линзы. Расстояния от фокусов до линзы не обязательно равны друг другу, но мы всегда будем иметь дело с ситуациями, когда фокусы расположены симметрично относительно линзы.

Двояковогнутая линза.

Теперь мы рассмотрим совсем другую линзу, ограниченную двумя вогнутыми сферическими поверхностями (рис. 4 ). Такая линза называется двояковогнутой . Так же, как и выше, мы проследим ход двух лучей, руководствуясь законом преломления.

Луч, выходящий из точки и идущий вдоль главной оптической оси, не преломляется - ведь главная оптическая ось, будучи осью симметрии линзы, перпендикулярна обеим сферическим поверхностям.

Луч , параллельный главной оптической оси, после первого преломления начинает удаляться от неё (так как при переходе из воздуха в стекло ), а после второго преломления удаляется от главной оптической оси ещё сильнее (так как при переходе из стекла в воздух ).

Двояковогнутая линза преобразует параллельный пучок света в расходящийся пучок (рис. 5 ) и называется поэтому рассеивающей.

Здесь также наблюдается сферическая аберрация: продолжения расходящихся лучей не пересекаются в одной точке. Мы видим, что чем дальше от главной оптической оси расположен падающий луч, тем ближе к линзе пересекает главную оптическую ось продолжение преломлённого луча.

Как и в случае двояковыпуклой линзы, сферическая аберрация будет практически незаметна для узкого приосевого пучка (рис. 6 ). Продолжения лучей, расходящихся от линзы, пересекаются приблизительно в одной точке - в фокусе линзы .

Если такой расходящийся пучок попадёт в наш глаз, то мы увидим за линзой светящуюся точку! Почему? Вспомните, как возникает изображение в плоском зеркале: наш мозг обладает способностью продолжать расходящиеся лучи до их пересечения и создавать в месте пересечения иллюзию светящегося объекта (так называемое мнимое изображение). Вот именно такое мнимое изображение, расположенное в фокусе линзы, мы и увидим в данном случае.

Виды собирающих и рассеивающих линз.

Мы рассмотрели две линзы: двояковыпуклую линзу, которая является собирающей, и двояковогнутую линзу, которая является рассеивающей. Существуют и другие примеры собирающих и рассеивающих линз.

Полный набор собирающих линз представлен на рис. 7 .

Помимо известной нам двояковыпуклой линзы, здесь изображены:плосковыпуклая линза, у которой одна из поверхностей плоская, и вогнуто-выпуклая линза, сочетающая вогнутую и выпуклую граничные поверхности. Обратите внимание, что у вогнуто-выпуклой линзы выпуклая поверхность в большей степени искривлена (радиус её кривизны меньше); поэтому собирающее действие выпуклой преломляющей поверхности перевешивает рассеивающее действие вогнутой поверхности, и линза в целом оказывается собирающей.

Все возможные рассеивающие линзы изображены на рис. 8 .

Наряду с двояковогнутой линзой мы видим плосковогнутую (одна из поверхностей которой плоская) и выпукло-вогнутую линзу. Вогнутая поверхность выпукло-вогнутой линзы искривлена в большей степени, так что рассеивающее действие вогнутой границы преобладает над собирающим действием выпуклой границы, и в целом линза оказывается рассеивающей.

Попробуйте самостоятельно построить ход лучей в тех видах линз, которые мы не рассмотрели, и убедиться, что они действительно являются собирающими или рассеивающими. Это отличное упражнение, и в нём нет ничего сложного - ровно те же самые построения, которые мы проделали выше!

1340. Фокусное расстояние линзы равно 10 см. Какова ее оптическая сила?

1341. Фокусное расстояние рассеивающей линзы равно 12,5 см. Определите оптическую силу линзы.

1342. Фокусное расстояние самого большого пулковского телескопа около 14 м. Какова оптическая сила его объектива?

1343. Чему равно фокусное расстояние линзы, если ее оптическая сила равна 0,4 дптр?

1344. Фокусное расстояние объектива фотоаппарата равно 60 мм. Какова оптическая сила фотоаппарата?

1345. Есть две линзы: первая – с фокусным расстоянием 5 см, вторая – с фокусным расстоянием 20 см. Какая из линз сильнее преломляет?

1346. В главный фокус собирающей линзы поместили источник света. Начертите ход лучей.

1347. Постройте изображение вертикально стоящего карандаша, формируемое собирающей линзой, для случая, когда карандаш находится за двойным фокусным расстоянием.

1348. Карандаш стоит между фокусом и двойным фокусным расстоянием собирающей линзы. Постройте полученное изображение.

1349. Постройте изображение карандаша, стоящего между фокусом собирающей линзы и самой линзой.

1350. Собирающая линза рассеивает лучи, падающие от точечного источника света на линзу. Нарисуйте, где находится в этом случае точечный источник света?

1351. Покажите построением наиболее простой способ определить главное фокусное расстояние собирающей линзы. Продемонстрируйте этот опыт.

1352. Объект АВ находится в двойном фокусе собирающей линзы (рис. 169). Постройте его изображение. Охарактеризуйте изображение.


1353. Постройте изображение точечного источника света S, которое образует собирающая линза, для случаев, показанных на рисунке 170.


1354. Рассеивающая линза дает изображение предмета АВ (рис. 171). Постройте это изображение и перечислите его свойства. Как зависит размер изображения от расстояния между предметом и линзой?


1355. Постройте изображение светящейся точки S, формируемое рассеивающей линзой (рис. 172). Охарактеризуйте изображение.


1356. На рисунке 173 ОО’ – главная оптическая ось линзы, S - точечный источник света, S’ - его изображение. Постройте положение линзы и ее фокусов. Определите, собирающая это линза или рассеивающая?


1357. В одном из ящиков на рисунке 174 находится собирающая линза, в другом – рассеивающая. Определите построением, где какая линза.


1358. На расстоянии 20 см от собирающей линзы расположен предмет, а его изображение находится на расстоянии f=10 см от линзы. Чему равно расстояние линзы?

1359. От флакончика до собирающей линзы расстояние d=30 см, а его действительное изображение до линзы расстояние f=60 см. Определите фокусное расстояние линзы.

1360. Объект находится на расстоянии 40 см от собирающей линзы. Его изображение получилось на расстоянии 120 см. Каково фокусное расстояние линзы?

1361. На расстоянии 50 см от собирающей линзы стоит карандаш. На каком расстоянии от линзы находится его изображение? Фокусное расстояние линзы 10 см. Охарактеризуйте изображение карандаша.

1362. Изображение предмета, сформированное собирающей линзой, получилось на расстоянии 22 см. Фокусное расстояние линзы равно 20 см. На каком расстоянии от линзы находится предмет, если:
а) его изображение – действительное;
б) его изображение – мнимое?

1363. В воде находится полая стеклянная двояковыпуклая линза, заполненная воздухом. На линзу падает параллельный пучок лучей света. Каков будет этот пучок после прохождения линзы? Сделайте чертеж.
Какие изображения будут давать в воде такая линза? Всегда ли двояковыпуклая линза является собирающей линзой?

1364. Разберите аналогичную задачу для полой двояковогнутой линзы, заполненной воздухом и находящейся в воде. Если в школьном физическом кабинете имеются часовые стекла, изготовьте из них описанные выше линзы и проделайте с ними опыты.

1365. Пользуясь формулой собирающей линзы:
1/d+1/f=1/F, рассчитайте положение и определите характер изображения предметов, различно удаленных от линзы, для случаев, указанных в таблице.
Для случаев d



1366. Напишите формулу рассеивающей линзы, принимая во внимание, что расстояние от оптического центра линзы до мнимого изображения точки берется со знаком минус.

1367. Определите оптическую силу линзы, фокусное расстояние которых 10 см; - 10 см.

1368. На каком расстоянии от линзы с фокусным расстоянием F = 10 см получится изображение предмета, помещенного на расстоянии 50 см от линзы?

1369. Изображение предмета, помещенного на расстоянии 40 см от двояковыпуклой линзы, получилось на расстоянии 15 см от линзы. Определите фокусное расстояние линзы и величину изображения, если величина самого предмета 60 см.

1370. На снимке, сделанном камерой с фотообъективом, фокусное расстояние которого 13,5 см, при длине камеры 15 см, получилось изображение предмета величиной 2 см. Какова действительная величина предмета?

1371. Расстояние между лампочкой и экраном равно L=150 см. Между ними помещается собирающая линза, которая дает на экране резкое изображение нитей лампочки при двух положениях линзы. Каково фокусное расстояние линзы, если расстояние между указанными положениями линзы l =30 см?

1372. Предмет находится на расстоянии 20 см от линзы, а его действительное изображение – на расстоянии 5 см от линзы. Определите оптическую силу линзы.

1373. Действительное изображение пузырька с клеем получилось на расстоянии 42 см от линзы, оптическая сила которой равна 2,5 дптр. На каком расстоянии от линзы находится пузырек?

1374. Предмет находится на расстоянии 30 см от рассеивающей линзы, его мнимое изображение – на расстоянии 15 см от линзы. Определиет фокусное расстояние линзы.

1375. Оптическая сила линзы – 2,5 дптр. Источник света находится на ее главной оптической оси. На каком расстоянии от линзы находится источник света?

1376. Предмет высотой 50 см находится на расстоянии d=60 см от собирающей линзы с фокусным расстоянием F=40 см. Определите высоту изображения.

1377. Человека ростом 2 м сфотографировали фотоаппаратом (фокусное расстояние объектива 12 см). величина человека на снимке оказалась 10 мм. определите расстояние между человеком и объективом.

1378*. Объектив проектора имеет фокусное расстояние 15 см и расположен на расстоянии 6 м от экрана. Определите линейное увеличение изображения на экране.

1379*. Вместо объектива с фокусным расстоянием 15 см (см. предудыщую задачу) поставили объектив с фокусным расстоянием 12 см. какое стало увеличение изображения на экране?

1382*. Как вы думаете, можно ли на зеркальном экране получить изображение диапозитива от проектора?
Нет. Потому что все лучи будут отражаться от поверхности.

1383*. Постройте ход лучей в микроскопе.

1384. Начертите ход лучей в телескопе.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...