Характеристики слухового ощущения. Особенности слуховых и осязательных ощущений

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, т.е. продольных колебаний частиц воздуха, распространяющихся во все стороны от колеблющегося тела, которое служит источником звука.

Все звуки, которые воспринимает человеческое ухо, могут быть разделены на две группы: музыкальные (звуки пения, звуки музыкальных инструментов и др.) и шумы (всевозможные скрипы, шорохи, стуки и т.д.). Строгой границы между этими группами звуков нет, так как музыкальные звуки содержат шумы, а шумы могут содержать элементы музыкальных звуков. Человеческая речь, как правило, одновременно содержит звуки обеих групп.

Основными качествами слуховых ощущений являются: а) громкость, б) высота, в) тембр, г) длительность, д) пространственное определение источника звука. Каждое из этих качеств слуховых ощущений отражает определенную сторону физической природы звука.

В ощущении громкости отражается амплитуда колебаний. Амплитудой колебаний является наибольшее отклонение звучащего тела от состояния равновесия или покоя. Чем больше амплитуда колебания, тем сильнее звук, и, наоборот, чем меньше амплитуда, тем звук слабее.

Сила звука и громкость — понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость — качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Для измерения силы звука существуют специальные приборы, дающие возможность измерять ее в единицах энергии. Единицами измерения громкости звука являются децибелы.

Громкость обычной человеческой речи на расстоянии 1 метра составляет 16-22 децибел, шум на улице (без трамвая) — до 30 децибел, шум в котельной — 87 децибел.

В ощущении высоты звука отражается частота колебаний звуковой волны (а, следовательно, и длины ее волны). Длина волны обратно пропорциональна числу колебаний и прямо пропорциональна периоду колебаний источника звука.

Высота звука измеряется в герцах, т.е. в количестве колебаний звуковой волны в секунду. Чем больше частота, тем более высоким кажется нам воспринимаемый сигнал. Человек способен воспринимать звуковые колебания, частота которых находится в пределах от 20-20 000 герц, причем у отдельных людей чувствительность уха может давать различные индивидуальные отклонения.

речевых и музыкальных звуков (по Р. Шошолю, 1966)

Верхняя граница слуха у детей — 22 000 герц. К старости эта граница понижается до 15 000 герц и ниже. Поэтому пожилые люди часто не слышат высоких звуков, например стрекотание кузнечиков.

У животных верхняя граница слуха значительно выше, чем у человека (у собаки она доходит до 38 000 Гц.) При повышении интенсивности высоких звуков возникает ощущение неприятного щекотания в ухе (осязание звука), а затем чувство боли.

В ощущении тембра звука отражается форма звуковой волны. В самом простом случае форма звукового колебания будет соответствовать синусоиде. Такие звуки получили название «простых». Их можно получить только с помощью специальных приборов. Близким и простому звуку является звучание камертона — прибора, используемого для настройки музыкальных инструментов. Окружающие нас звуки состоят из различных звуковых элементов, поэтому форма их звучания, как правило, не соответствует синусоиде. Но тем не менее музыкальные звуки возникают при звуковых колебаниях, имеющих форму строгой периодической последовательности, а у шумов — наоборот.

Таким образом, сочетание простых звуков в одном сложном придает своеобразие форме звукового колебания и определяет тембр звучания. Тембр звучания зависит от степени слияния звуков. Чем проще форма звукового колебания, тем приятнее звучание. Поэтому принято выделять приятное звучание — консонанс и неприятное звучание — диссонанс.

Тембром называется то специфическое качество, которое отличает друг от друга звуки одной и той же высоты и интенсивности, издаваемые разными источниками (рояль, скрипка, флейта). Очень часто о тембре говорят как об «окраске» звука.

Тембровая окраска приобретает особенное богатство благодаря так называемому вибрато (К.Сишор, 1935), придающему звуку человеческого голоса, скрипки большую эмоциональную выразительность. Вибрато отражает периодические изменения (пульсации) высоты, интенсивности и тембра звука. Вибрато специально изучалось К.Сишором с помощью фотоэлектрических снимков. По его данным, вибрато, будучи выражением чувства в голосе, не дифференцировано для различных чувств. Вибрато играет значительную роль в музыке и пении; оно представлено и в речи, особенно эмоциональной. Хорошее вибрато порождает впечатление приятной гибкости, полноты, мягкости и богатства.

Продолжительность действия звука и временные отношения между отдельными звуками отражаются в виде той или иной длительности слуховых ощущений.

Слуховое ощущение относит звук к его источнику, звучащему в определенной среде, т.е. определяет местоположение звука. В лаборатории Павлова было обнаружено, что после рассечения мозолистого тела собаки исчезает способность определения местоположения источника звука. Таким образом, пространственная локализация звука определяется парной работой больших полушарий.

Каждое слуховое ощущение представляет собой взаимосвязь между основными качествами слуха, которые отражают взаимосвязь акустических и временно-пространственных свойств предметов и среды распространения исходящих от них звуковых волн.

[В подготовке настоящего раздела о слуховых ощущениях существенную помощь нам оказала наша сотрудница В. Е. Сыркина, сочетающая свою психологическую специальность с музыкальной. Благодаря любезности Б. М. Теплова нам удалось также частично использовать в этом разделе его ещё не опубликованную работу.]

Особое значение слуха у человека связано с тем, что он служит для восприятия речи и музыки.

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, которые порождаются звучащим телом и представляют собой переменное сгущение и разрежение воздуха.

Звуковые волны обладают, во-первых, различной амплитудой колебания. Под амплитудой колебания разумеют наибольшее отклонение звучащего тела от состояния равновесия или покоя. Чем больше амплитуда колебания, тем сильнее звук, и, наоборот, чем меньше амплитуда, тем звук слабее. Сила звука прямо пропорциональна квадрату амплитуды. Эта сила зависит также от расстояния уха от источника звука и от той среды, в которой распространяется звук. Для измерения силы звука существуют специальные приборы, дающие возможность измерять её в единицах энергии.

Звуковые волны различаются, во-вторых, по частоте или продолжительности периода колебаний. Длина волны обратно пропорциональна числу колебаний и прямо пропорциональна периоду колебаний источника звука. Волны различного числа колебаний в 1 сек. или в период колебания дают звуки, различные по высоте: волны с колебаниями большой частоты (и малого периода колебаний) отражаются в виде высоких звуков, волны с колебаниями малой частоты (и большого периода колебания) отражаются в виде низких звуков.

Звуковые волны, вызываемые звучащим телом, источником звука, различаются, в-третьих, формой колебаний, т. е. формой той периодической кривой, в которой абсциссы пропорциональны времени, а ординаты - удалениям колеблющейся точки от своего положения равновесия. Форма колебаний звуковой волны отражается в тембре звука - том специфическом качестве, которым звуки той же высоты и силы на различных инструментах (рояль, скрипка, флейта и т. д.) отличаются друг от друга.

Зависимость между формой колебания звуковой волны и тембром не однозначна. Если два тона имеют различный тембр, то можно определённо сказать, что они вызываются колебаниями различной формы, но не наоборот. Тоны могут иметь совершенно одинаковый тембр, и, однако, форма колебаний их при этом может быть различна. Другими словами, формы колебаний разнообразнее и многочисленнее, чем различаемые ухом тоны.

Слуховые ощущения могут вызываться как периодическими колебательными процессами, так и непериодическими с нерегулярно изменяющейся неустойчивой частотой и амплитудой колебаний. Первые отражаются в музыкальных звуках, вторые - в шумах.



Кривая музыкального звука может быть разложена чисто математическим путём по методу Ж. Б. Фурье на отдельные, наложенные друг на друга синусоиды. Любая звуковая кривая, будучи сложным колебанием, может быть представлена как результат большего или меньшего числа синусоидальных колебаний, имеющих число колебаний в секунду, возрастающее, как ряд целых чисел 1, 2, 3, 4. Наиболее низкий тон, соответствующий 1, называется основным. Он имеет тот же период, как и сложный звук. Остальные простые тоны, имеющие вдвое, втрое, вчетверо и т. д. более частые колебания, называются верхними гармоническими или частичными (парциальными), или обертонами.

Органом слуха является ухо. Оно состоит из трёх частей: 1) наружного уха, 2) среднего уха и 3) внутреннего уха. Главные части слухового аппарата - среднее ухо и внутреннее ухо - помещены в виде маленьких полостей в височной кости.

Строение уха.

1 - наружный слуховой проход; 2 - барабанная перепонка; 3 - полость среднего уха(барабанная полость); 4 - молоточек; 5 - наковальня; 6 - стремечко, упирающееся в овальное окошечко, 7 - полукружные каналы; 8 - преддверие; 9 - лестница преддверия; 10 - барабанная лестница; 11 - круглое окошечко; 12 - евстахиева труба; 13 - кость в разрезе

Наружное ухо состоит из ушной раковины и слухового прохода. Ушная раковина является своеобразной слуховой воронкой, но она не необходима для слушания; многие животные с хорошим слухом, как птицы или лягушки, её не имеют. Ушная раковина служит для собирания и отражения звуковых волн к слуховому проходу. Кроме того, она даёт возможность различать, приходит ли звук спереди или сзади. Если прибинтовать ушные раковины к голове, то эта способность теряется. Способность различать направление звука (бинауральный или стереакустический эффект, см. дальше) весьма мало зависит от ушной раковины, но объясняется своеобразным свойством слуха воспринимать пространственно малые разницы во времени.

Границей между наружным и средним ухом служит барабанная перепонка. Барабанная перепонка очень тонка, но достаточно прочна, чтобы выдерживать, не лопаясь, даже очень громкие звуки, например звуки пушечных выстрелов. Неправильная воронкообразная форма и неравномерное натяжение барабанной перепонки делают возможными соколебания её в ответ на всевозможные тоны.

Среднее ухо, или барабанная полость, представляет собой воздушную полость внутри височной кости. В барабанной полости имеется сложная система сочленённых косточек - молоточка, наковальни и стремечка, передающих колебания барабанной перепонки так называемому овальному окну внутреннего уха.

За перепонкой овального окна расположено внутреннее ухо, в котором находится лабиринт. Главными частями лабиринта являются преддверие, полукружные каналы и улитка. Преддверие и полукружные каналы являются органом равновесия; с точки зрения функции слуха наиболее важным органом является улитка. Улитка представляет собой спирально закрученную костную оболочку. Вдоль неё тянется перегородка, разделяющая ее как бы на два этажа.

В большей части поперечника перегородка эта костная; на меньшем протяжении это гибкая перепонка, состоящая из поперечных, весьма эластических, упругих волоконец, слабо между собой связанных, - так называемая основная мембрана. По мере приближения к вершине улитки основная мембрана расширяется и недалеко от вершины она примерно в 12 раз шире, чем у основания. В области, прилегающей к костной спиральной перегородке, основная мембрана значительно утолщается. Здесь лежат особого типа нервные клетки - упругие кортиевы дуги ,поддерживающие напряжение основной мембраны. С ними связаны волокна слухового нерва, которые оканчиваются так называемыми волосатыми клетками, расположенными пятью рядами вдоль длины основной мембраны. Этих клеток на основной мембране насчитывается около 23 500. Параллельно основной мембране, на очень близком от неё расстоянии, идёт вторая, текториальная, или покровная, мембрана. Жидкость улитки, передающая колебания, в своём движении приводит в соколебание основную мембрану; волосатые клетки прикасаются к плавающей над ними текториальной мембране и получают таким образом раздражение, которое передаётся по нервным волоконцам в мозг. Разделяясь в области среднего мозга, нервные волокна от обоих ушей идут как к правому, так и к левому полушарию.

Кортиев орган.

1 - перепонка Рейснера; 2 - полость перепончатой улитки; 3 - покровная перепонка; 4 - волоски слуховой клетки; 5 - наружные слуховые клетки; 6 - внутренняя слуховая клетка; 7 - кортиевые дуги; 8 - основная перепонка; 9 - нервные волокна

При воздействии звука в слуховых областях обоих полушарий создаются соседние участки возбуждения, из которых один возбуждается правым ухом, другой - левым. Нервные пути, таким образом, оказываются дублированными, и в случае поражения слухового центра одного из полушарий восприятие осуществляется в другом. Слуховые области расположены симметрично в обеих половинах мозга, в височных его долях и главным образом в первой височной извилине. При поражении этих частей мозга наступает более или менее сильное расстройство слуха. Может возникнуть даже полная глухота (кортикальная глухота). Если височная доля разрушена лишь частично, то результатом является так называемая душевная глухота: реакция на звуки остаётся, но понимание их значения теряется. Больной слышит произнесённое слово только как какой-то шум. Это отсутствие понимания речи, глухота на слова, лежит в основе сенсорной афазии, или так называемой афазии Вернике, которая наблюдается при заболевании первой височной извилины, особенно её задней области, где находится сенсорный центр речи.

Согласно исследованиям Лючиани и павловской школы, помимо центров, тесно связанных с определённой функцией, и в других областях коры, даже в самых отдалённых, рассеяны клетки, связанные с той же функцией. По отношению к слуховым ощущениям установлено, что при удалении центра слуха навсегда теряются условные рефлексы на сложнокомплексные звуковые раздражители (аккорд, кличка собаки и т. п.). Однако простые звуковые раздражители продолжают действовать. Это происходит за счёт сохранившихся звуковых клеток, лежащих рассеянно в теменной, затылочной и других областях коры.

Все слышимые звуки разделяются на шумы и музыкальные звуки . Первые отражают непериодические колебания неустойчивой частоты и амплитуды, вторые - периодические колебания. Между музыкальными звуками и шумами нет, однако, резкой грани. Акустическая составная часть шума часто носит ярко выраженный музыкальный характер и содержит разнообразные тоны, которые легко улавливаются опытным ухом. Свист ветра, визг пилы, различные шипящие шумы с включёнными в них высокими тонами резко отличаются от шумов гула и журчания, характеризующихся низкими тонами. Отсутствием резкой границы между тонами и шумами объясняется то, что многие композиторы прекрасно умеют изображать музыкальными звуками различные шумы (журчанье ручья, жужжание прялки в романсах Ф. Шуберта, шум моря, лязг оружия у Н. А. Римского-Корсакова и т. д.).

В звуках человеческой речи также представлены как шумы, так и музыкальные звуки.

Основными свойствами всякого звука являются: 1) его громкость , 2) высота и 3) тембр .

1. Громкость . Громкость зависит от силы, или амплитуды, колебаний звуковой волны. Сила звука и громкость - понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость - качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Согласно закону Вебера-Фехнера, громкость некоторого звука будет пропорциональна логарифму отношения его силы J к силе того же самого звука на пороге слышимости J 0 :

В этом равенстве K - коэффициент пропорциональности, a L выражает величину, характеризующую громкость звука, сила которого равна J ; её обычно называют уровнем звука.

Если коэффициент пропорциональности, являющийся величиной произвольной, принять равным единице, то уровень звука выразится в единицах, получивших название белов (Б):

Практически оказалось более удобным пользоваться единицами, в 10 раз меньшими; эти единицы получили название децибелов (дБ).Коэффициент K при этом, очевидно, равняется 10. Таким образом:

Минимальный прирост громкости, воспринимаемый человеческим ухом, равен примерно 1 дБ . Приводимая таблица может дать более конкретное представление о децибеле.

Звук Уровень силы в децибелах Сила звука в эрг.
Едва слышный звук 1∙10 -1
Тихий шопот на расстоянии 1,5 м 1∙10 -5
Тиканье часов 1∙10 -4
Шаги по мягкому ковру на расстоянии 3-4 м 1∙10 -3
Тихий разговор 1∙10 -2
Дребезжание на расстоянии около 1 м 1∙10 -1
Речь средней громкости
Шум оживлённой улицы 1∙10 1
Крик 1∙10 2
Шум в печатном цехе в типографии 1∙10 3
Фортиссимо большого оркестра 1∙10 4
Шум аэропланного мотора на расстоянии 3 м 1∙10 5
Ощущение боли 1∙10 6

(Источник: Путилов, Курс физики, 1937, стр. 549-550.)

Известно, что закон Вебера-Фехнера теряет силу при слабых раздражениях; поэтому уровень громкости очень слабых звуков не даёт количественного представления об их субъективной громкости.

Согласно новейшим работам, при определении разностного порога следует учитывать изменение высоты звуков. Для низких тонов громкость растёт значительно быстрее, чем для высоких.

Количественное измерение громкости, непосредственно ощущаемой нашим слухом, не столь точно, как оценка на слух высоты тонов. Однако в музыке давно применяются динамические обозначения, служащие для практического определения величины громкости. Таковы обозначения: ppp (пиано-пианиссимо), pp (пианиссимо), p (пиано), mp (меццо-пиано), mf (меццо-форте), f (форте), ff (фортиссимо), fff (форте-фортиссимо). Последовательные обозначения этой шкалы означают примерно удвоение громкости.

Человек может без всякой предварительной тренировки оценивать изменения громкости в некоторое (небольшое) число раз (в 2, 3, 4 раза). При этом удвоение громкости получается примерно как раз при прибавке около 20 дБ . Дальнейшая оценка увеличения громкости (более чем в 4 раза) уже не удаётся. Исследования, посвященные этому вопросу, дали результаты, резко расходящиеся с законом Вебера-Фехнера. [Расхождение закона Вебера-Фехнера с опытными данными объясняется, по-видимому, тем, что интегрирование закона Э. Вебера, произведённое Г. Фехнером, является не вполне законной математической операцией. Фехнер принял разностный порог за величину бесконечно малую, между тем как в действительности это величина конечная, да к тому же быстро растущая при слабых звуках.] Они показали также наличие значительных индивидуальных отличий при оценке удвоения громкостей.

При воздействии звука в слуховом аппарате происходят процессы адаптации, изменяющие его чувствительность. Однако в области слуховых ощущений адаптация очень невелика и обнаруживает значительные индивидуальные отклонения. Особенно сильно сказывается действие адаптации при внезапном изменении силы звука. Это так называемый эффект контраста.

Измерение громкости производится в децибелах. С. Н. Ржевкин указывает, однако, что шкала децибелов не является удовлетворительной для количественной оценки натуральной громкости. Так, например, шум в поезде метро на полном ходу оценивается в 95 дБ , а тикание часов на расстоянии 0,5 м - в 30 дБ . Таким образом, по шкале децибелов отношение равно всего 3, в то время как для непосредственного ощущения первый шум почти неизмеримо больше второго. В настоящее время с различных сторон подходят к созданию натуральной шкалы громкости, которая будет несомненно более пригодной для практических целей.

2. Высота . Высота звука отражает частоту колебаний звуковой волны. Далеко не все звуки воспринимаются нашим ухом. Как ультразвуки (звуки с большой частотой), так и инфразвуки (звуки с очень медленными колебаниями) остаются вне пределов нашей слышимости. Нижняя граница слуха у человека составляет примерно 15-19 колебаний в секунду (герц - Гц ); верхняя - приблизительно 20 000 Гц , причём у отдельных людей чувствительность уха может давать различные индивидуальные отклонения. Обе границы изменчивы, верхняя в особенности в зависимости от возраста; у пожилых людей чувствительность к высоким тонам регулярно падает. У животных верхняя граница слуха значительно выше, чем у человека; у собаки она доходит до 38 000 Гц .

При воздействии частот выше 15 000 Гц ухо становится гораздо менее чувствительным; теряется способность различать высоту тона. При 19 000 Гц предельно слышимыми оказываются лишь звуки, в миллион раз более интенсивные, чем при 14 000 Гц .При повышении интенсивности высоких звуков возникает ощущение неприятного щекотания в ухе (осязание звука), а затем чувство боли. Область слухового восприятия охватывает свыше 10 октав и ограничена сверху порогом осязания, снизу порогом слышимости. Внутри этой области лежат все воспринимаемые ухом звуки различной силы и высоты. Наименьшая сила требуется для восприятия звуков от 1 000 до 3 000 Гц .В этой области ухо является наиболее чувствительным. На повышенную чувствительность уха в области 2 000-3 000 Гц указывал ещё Г. Л. Ф. Гельмгольц; он объяснял это обстоятельство собственным тоном барабанной перепонки.

Величина порога различения, или разностного порога, высоты (по данным Т. Пэра, В. Штрауба, Б. М. Теплова) в средних октавах у большинства людей находится в пределах от 6 до 40 центов (цент - сотая доля темперированного полутона). У высокоодарённых в музыкальном отношении детей, обследованных Л. В. Благонадёжиной, пороги оказались равны 6-21 центам.

Приводим таблицу порогов различения высоты у учащихся «особой детской группы» Московской государственной консерватории (по Л. В. Благонадёжиной).

Существует собственно два порога различения высоты: 1) порог простого различения и 2) порог направления (В. Прейер и др.). Иногда при малых различениях высоты испытуемый замечает различия в высоте, не будучи, однако, в состоянии сказать, какой из двух звуков выше.

По данным целого ряда исследователей (Джильберта, Гентшеля, Мейснера, Майнуоринга и др.), чувствительность к различению высоты вырастает с возрастом (у детей от 6 до 14 и 17 лет). Притом это возрастание чувствительности (и, значит, снижение порогов) находится в значительной зависимости от занятия музыкой; у детей, занимающихся музыкой, оно увеличивается больше, чем у тех, которые музыкой не занимаются (Мейснер). Упражнение заметно повышает чувствительность к различению высоты. Об этом свидетельствуют данные ряда авторов (начиная со К. Штумпфа). Особенно показательны в этом отношении опыты Б. М. Теплова. В результате специально проведённых очень простых упражнений, на которые в общем затрачивают лишь несколько часов, Теплов получил резкое снижение порогов. У одного его испытуемого при первом испытании порог равнялся 32 центам, при втором 28, при третьем 22, при четвёртом 16 центам (всего на упражнение с этим испытуемым было потрачено около 4 часов). У другого испытуемого порог снизился с 20 до 12, у двух других с 14 до 10, у одного испытуемого с исключительно большим порогом в 226 центов он в результате 7 сеансов, на которые было потрачено 8 часов, снизился до 94 центов. Таким образом, чувствительность к различению высоты является функцией, весьма поддающейся упражнению.

Отчётливое восприятие высоты требует некоторого минимума колебаний. Этот минимум при различных частотах различен. Данные различных авторов по этому вопросу не вполне однородны. Абрагам указывает как минимум два полных колебания. Позднейшие авторы указывают большее число колебаний - 4, 5, 30 и более, до 300, - в зависимости от частоты.

Высота звука, как она обычно воспринимается в шумах и звуках речи, включает два различных компонента - собственно высоту и тембровую характеристику.

В звуках сложного состава изменение высоты связано с изменением некоторых тембровых свойств. Объясняется это тем, что при увеличении частоты колебаний неизбежно уменьшается число частотных тонов, доступных нашему слуховому аппарату. В шумовом и речевом слышании эти два компонента высоты не дифференцируются. Вычленение высоты в собственном смысле слова из её тембровых компонентов является характерным признаком музыкального слышания (Б. М. Теплов). Оно совершается в процессе исторического развития музыки, как определённого вида человеческой деятельности.

Один вариант двухкомпонентной теории высоты развил Ф. Брентано и вслед за ним Г. Ревеш, исходя из принципа октавного сходства звуков. Ревеш различает качество и светлость звука. Под качеством звука он понимает такую особенность высоты звука, благодаря которой мы различаем звуки в пределах октавы. Под светлостью - такую особенность его высоты, которая отличает звуки одной октавы от звуков другой. Так, например, все ноты «до» качественно тожественны, но по светлости отличны. Ещё К. Штумпф подверг эту концепцию жёсткой критике. Конечно, октавное сходство существует (так же, как и сходство квинтовое), но оно не определяет никакого компонента высоты.

М. Мак-Маер, К. Штумпф и особенно В. Келер дали другую трактовку двухкомпонентной теории высоты, различив в ней собственно высоту и тембровую характеристику высоты (светлость). Однако эти исследователи (так же как и Е. А. Мальцева), проводя различение двух компонентов высоты, оставались в чисто феноменальном плане: к одной и той же объективной характеристике звуковой волны они соотносили два различных и отчасти даже разнородных свойства ощущения. Б. М. Теплов указал на объективную основу этого явления, заключающуюся в том, что с увеличением высоты изменяется число доступных уху частичных тонов. Поэтому различие тембровой окраски звуков различной высоты имеется в действительности лишь в сложных звуках; в простых тонах она представляет собой результат переноса. [Б. М. Теплов, Ощущение музыкального звука. «Учёные записки Госуд. научно-иссл. института психологии», т. I, M. 1940, стр. 115-150.]

В силу этой взаимосвязи собственно высоты и тембровой окраски не только различные инструменты отличаются по своему тембру друг от друга, но и различные по высоте звуки на том же самом инструменте отличаются друг от друга не только высотой, но и тембровой окраской. В этом сказывается взаимосвязь различных сторон звука - его звуковысотных и тембровых свойств.

3. Тембр . Под тембром понимают особый характер или окраску звука, зависящую от взаимоотношения его частичных тонов. Тембр отражает акустический состав сложного звука, т. е. число, порядок и относительную силу, входящих в его состав частичных тонов (гармонических и негармонических).

По Гельмгольцу, тембр зависит от того, какие верхние гармонические тоны примешаны к основному, и от относительной силы каждого из них.

В наших слуховых ощущениях тембр сложного звука играет очень значительную роль. Частичные тоны (обертоны), или, по терминологии Н. А. Гарбузова, верхние натуральные призвуки, имеют большое значение также и в восприятии гармонии.

Тембр, как и гармония, отражает звук, который в акустическом своём составе является созвучием. Поскольку это созвучие воспринимается как единый звук без выделения в нём слухом акустически в него входящих частичных тонов, звуковой состав отражается в виде тембра звука. Поскольку же слух выделяет частичные тоны сложного звука, возникает восприятие гармонии. Реально в восприятии музыки имеет обычно место и одно и другое. Борьба и единство этих двух взаимопротиворечивых тенденций - анализировать звук как созвучие и воспринимать созвучие как единый звук специфической тембровой окраски - составляет существенную сторону всякого реального восприятия музыки.

Тембровая окраска приобретает особенное богатство благодаря так называемому вибрато (К. Сишор), придающему звуку человеческого голоса, скрипки и т. д. большую эмоциональную выразительность. Вибрато отражает периодические изменения (пульсации) высоты и интенсивности звука.

Вибрато играет значительную роль в музыке и пении; оно представлено и в речи, особенно эмоциональной. Поскольку вибрато имеется у всех народов и у детей, особенно музыкальных, встречаясь у них независимо от обучения и упражнения, оно, очевидно, является физиологически обусловленным проявлением эмоционального напряжения, способом выражения чувства.

Вибрато в человеческом голосе как выражение эмоциональности существует, вероятно, с тех пор, как существует звуковая речь и люди пользуются звуками для выражения своих чувств. [Вибрато специально изучалось в последнее время К. Сишором, в течение ряда лет применявшим в этих целях фотоэлектрические снимки. См. C. E. Seaschore, Psychology of the Vibrato in music and speech, «Acta psychologica», vol. 1, № 4. Hague 1935. По данным К. Сишора, вибрато, будучи вообще выражением чувства в голосе, не дифференцировано для различных чувств.]Вокальное вибрато возникает в результате периодичности сокращения парных мышц, наблюдающейся при нервной разрядке в деятельности различных мышц, не только вокальных. Напряжение и разрядка, выражающиеся в форме пульсирования, однородны с дрожанием, вызываемым эмоциональным напряжением.

Существует хорошее и дурное вибрато. Дурное вибрато такое, в котором имеется излишек напряжения или нарушение периодичности. Хорошее вибрато является периодической пульсацией, включающей определённую высоту, интенсивность и тембр и порождающей впечатление приятной гибкости, полноты, мягкости и богатства тона.

То обстоятельство, что вибрато, будучи обусловлено изменениями высоты и интенсивности звука, воспринимается как тембровая окраска, снова обнаруживает внутреннюю взаимосвязь различных сторон звука. При анализе высоты звука уже обнаружилось, что высота в её традиционном понимании, т. е. та сторона звукового ощущения, которая определяется частотой колебаний, включает не только высоту в собственном смысле слова, но и тембровый компонент светлоты. Теперь обнаруживается, что в свою очередь в тембровой окраске - в вибрато - отражается высота, а также интенсивность звука.

Различные музыкальные инструменты отличаются друг от друга тембровой характеристикой. Н. А. Римский-Корсаков так характеризует тембр различных деревянных духовых инструментов в низком и высоком регистрах.

Слух обеспечивает головной мозг богатством звуков, обилием информации, недоступной другим органам чувств. Слух собирает информацию, поступающую от всего, что окружает тело. Зрение, при всех его достоинствах, ограничено стимулами, находящимися перед глазами. Звуковые волны – ритмичные движения молекул воздуха создаются любым вибрирующим объектом: музыкальным инструментом, голосовыми связками и т.д. Другие среды – жидкости и твердые тела тоже могут передавать звук, но в вакууме звук не распространяется. Частота звуковых волн (количество волн в секунду) соответствует воспринимаемой высоте звука (повышенному или пониженному тону). Амплитуда звуковой волны соответствует количеству энергии, содержащемуся в ней, – ощущаемая громкость звука.

Ушная раковина действует подобно воронке, концентрирующей звуки. Попадая в ухо, звуковые волны наталкиваются на барабанную перепонку – тонкую мембрану внутри звукового прохода. Звуковые волны приводят барабанную перепонку в движение, она заставляет вибрировать слуховые косточки, соединяющие ее с улиткой – органом, образующим внутреннее ухо. Средне ухо заполнено вязкой жидкостью, а на его поверхности расположены нервные окончания – волосковые нервные клетки - именно они кодируют полученную информацию в нервный импульс и передают в мозг.

Для понимания механизма слуховых ощущений огромное значение имеет метод наблюдения клинического случая, а именно исследования расстройств слуха. Выделяют два вида глухоты. Глухота проводимости имеет место, когда ухудшена передача звуков от барабанной перепонки к внутреннему уху. Например, могут быть повреждены или обездвижены из-за болезни или травмы барабанные перепонки или слуховые косточки. Во многих случаях этот вид глухоты можно исправить при помощи слухового аппарата, который делает звуки более громкими и четкими. Нервная глухота является следствием повреждения волосковых клеток или слухового нерва. Слуховые аппараты в этом случае не помогают, т.к. сигналы блокируются и не достигают головного мозга. Особенно интересен такой вид нервной глухоты, как глухота раздражимости – имеет место, когда очень громкие звуки повреждают волосковые клетки в улитке. Как частный случай рассматривается охотничья глухота. Она возникает, если охотники не защищают органы слуха от звука выстрела. Слух сохраняется для всех звуков, кроме выстрела – он не воспринимается. Этот феномен позволил предположить, что за восприятие определенных звуков отвечают определенные рецепторы – волосковые нервные окончания.

Каждый из нас начинает жизнь примерно с 32000 волосковых клеток. Однако мы начинаем терять их уже в момент рождения. К 65 годам даже при бережном отношении к рецепторам слуха утрачивается почти 40% волосковых нервных окончаний. Если вы работаете в шумной обстановке или наслаждаетесь громкой музыкой, увлекаетесь мотоциклами и подобными развлечениями, вам может грозить глухота раздражимости (нервная). Волосковые клетки толщиной примерно с паутинку, они очень хрупкие и легко повреждаются. После их гибели их ничто не заменит. Угроза потери слуха зависит от громкости звука и от того, как долго он на вас воздействует. Ежедневное воздействие 85 децибелов и более может привести к хронической глухоте. Даже кратковременные воздействия звука громкостью 120 децибелов (рок-концерт) могут вызвать временное смещение порога (частичную обратимую потерю слуха). Кратковременное воздействие 150 дц. Реактивный самолет – может вызвать хроническую глухоту. Музыка и шум способны причинить вред, а танцы увеличивают этот риск, направляя кровяной поток от внутреннего уха к конечностям. Стереонаушники плеера также представляют опасность, достигая громкости примерно в 115 дц. Если вы слышите звук, идущий из наушников человека, находящегося радом, то скорее всего громкость причиняет необратимый вред ушам пользователя. Воздействие громких звуков, вызывающее шум в ушах, делает очень вероятным повреждение волосковых клеток. Если звуки, вызывающие это повреждение, будут повторяться, то вероятна хроническая тугоухость. Исследование людей, которые регулярно ходят на шумные концерты, показало, что 44% из них страдают от шума в ушах и у большинства отмечается частичная потеря слуха.


5.2.4. Ощущения обоняния и вкуса. Если вы не дегустатор, парфюмер или повар, то вы можете посчитать, что обоняние и вкус – второстепенные ощущения. Разумеется, человек может прожить без двух химических органов чувств, рецепторов, которые реагируют на молекулы химических веществ. Тем не менее, обоняние и вкус время от времени предотвращают отравления и делают нашу жизнь более приятной.

Рецепторы запаха реагируют главным образом на молекулы газообразных веществ. Когда воздух попадает к нам в нос, он проходит примерно поверх 5 миллионов нервных волокон, внедренных в покров носовых путей. Переносимые воздухом молекулы, проходя мимо оголенных нервных волокон, посылают нервные сигналы, которые направляются в головной мозг. Вопрос о том, как именно продуцируются определенные запахи, сегодня остается открытым. Одну из подсказок дает расстройство, называемое аносмией – обонятельная слепота. Аносмия позволяет предположить, что обонятельные волокна имеют рецепторы, чувствительные к специфическим запахам. Имеется по меньшей мере 100 видов рецепторов запаха. Каждый обонятельный рецептор чувствителен только к какой-то части структуры молекулы, посылая сигналы о выявлении определенных видов молекул, рецепторы дают возможность мозгу распознавать молекулярные отпечатки, указывающие на определенный запах. Эту теорию запаха называют теорией замка и ключа, т.к. можно предположить, что определенные обонятельные рецепторы воспринимают специфичные, только им предназначенные молекулы запаха по принципу мозаики. Запахи также частично идентифицируются местонахождением в носу рецепторов, активизирующих запах. И наконец, число активизированных рецепторов сообщает мозгу, насколько резок запах. Один широкомасштабный тест показал, что ощущать запахи неспособен один человек из 100. Люди с полной аносмией, как правило, обнаруживают, что обоняние далеко не второстепенное чувство. Если вы дорожите обонянием, то следите за тем, что вы вдыхаете. Опасность для обонятельных нервов представляют химические вещества, такие как аммиак, фотопроявители, средства для укладки волос, а также инфекции, аллергии и удары по голове, которые могут вызвать разрыв нервных волокон.

Существует по крайней мере четыре базовых ощущения вкуса: сладкого, соленого, кислого и горького. Мы наиболее чувствительны к горькому и кислому, менее к соленому, и в наименьшей степени к сладкому. Возможно этот порядок существует для предотвращения отравлений, поскольку горькие и кислые продукты бывают чаще всего несъедобными. Но, если существует 4 вкуса, то откуда такое богатство привкусов. Привкусы кажутся особенно разнообразными потому, что мы примешиваем к вкусу ощущения структуры материала, температуры, запаха и даже боли (обжигающий перец). Особенно влияет на вкус запах. Маленькие кусочки картофеля и яблок могут показаться совершенно одинаковыми на вкус, когда заложен нос. Рецепторы вкуса – вкусовые почки расположены главным образом на верхней стороне языка по его краям. Однако в небольшом количестве они находятся внутри ротовой полости. Когда растворенная пища попадает на вкусовые почки, она отправляет нервный импульс в головной мозг. Вкусовая чувствительность связана с тем, сколько вкусовых почек имеется на вашем языке, их может быть от 500 до 10 000. В последнем случае людям достаточно положить в кофе половину обычного количества сахара. Во многом подобно обонянию, сладкие и горькие вкусовые ощущения основываются на замково-ключевом соответствии между молекулами и имеющими замысловатую форму рецепторами.

5.2.5. Соместетические ощущения. Такие повседневные виды деятельности, как ходьба или бег, были бы невозможны без ощущений, идущих от тела, которые включают в себя кожные ощущения (прикосновение, давление, боль и температура), кинестетические ощущения (рецепторы в мышцах и суставах, определяющие положение движение тела) и вестибулярные ощущения (репторы внутреннего уха, отвечающие за равновесие, тяготение и ускорение).

Вестибулярная система известна, прежде всего, морской болезнью и другими разновидностями укачивания. Наполненные жидкостью мешочки вестибулярной системы (отолитовые органы) чувствительны к движению, ускорению и тяготению. Сильное гравитационное воздействие способно вызвать передвижение массы жидкости, которое в свою очередь сообщает раздражение волосковым рецепторным клеткам, позволяя ощущать силу тяготения. Вот почему инфекция внутреннего уха способна вызвать сильное головокружение. Наилучшим объяснением укачивания является теория сенсорного конфликта. Согласно ей, головокружение и тошнота имеют место, когда ощущения вестибулярной системы не соответствуют информации, получаемой от глаз и тела. На твердой поверхности информация, идущая от вестибулярной системы, органа зрения и кинестетической системы обычно совпадает, но в автомобиле, самолете, лодке эти сигналы могут иметь значительное расхождение. Многие яды также нарушают согласованность сведений вестибулярной системы и органов зрения и тела. Поэтому в процессе эволюции человечество научилось реагировать на сенсорный конфликт рвотными позывами, способствующими удалению яда.

Кожные рецепторы продуцируют по меньшей мере пять ощущений: легкого касания, давления, боли, холода и тепла. Рецепторы определенной формы специализируются на различных ощущениях, однако четкой специфики нет, так рецепторы температуры при очень сильном воздействии становятся рецепторами боли. В целом на поверхности тела находятся 200 тысяч нервных окончаний, реагирующих на температуру, 500 тысяч – на прикосновение и давление, 3 миллиона на боль. Количество рецепторов на каждом участке кожи различно. В среднем под коленом на кв. см. поверхности тела приходится около 232 болевых точек, на подушке большого пальца 60, на кончике носа –44. Фактически существует два вида боли – предаваемая большими нервными волокнами, она отличается резкостью, отчетливостью и быстродействием, ее передает предупреждающая система тела. И боль, передаваемая малыми нервными волокнами, – замедленная, ноющая, тупая, отличается широким распространением и очень неприятна – боль напоминающей системы. Она напоминает головному мозгу, что телу нанесено повреждение. Она вызывает сильную боль даже когда напоминание уже бесполезно – при неизлечимой форме рака, например.

Одной из важнейших характеристик сенсорных анализаторов является возможность адаптации. Чувствительность многих ощущений меняется на несколько порядков. Наименьшая степень адаптации свойственна боли, т.к. свидетельствует о нарушениях в организме, и быстрая адаптация к ней может грозить гибелью.

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными (физическими) характеристиками звуковой волны.

Воспринимаемые звуки человек различает их по тембру, высоте, громкости.

Тембр – « окраска» звука и определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – это качественная характеристика звука.

Высотатона – субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота, главным образом, основного тона, тем больше высота воспринимаемого звука. Чем больше интенсивность, тем ниже высота воспринимаемого звука.

Громкость – также субъективная оценка, характеризующая уровень интенсивности.

Громкость главным образом зависит от интенсивности звука. Однако восприятие интенсивности зависит от частоты звука. Звук большей интенсивности одной частоты может восприниматься как менее громкий, чем звук меньшей интенсивности другой частоты.

Опыт показывает, что для каждой частоты в области слышимых звуков

(16 – 20 . 10 3 Гц) имеется так называемый порог слышимости. Это минимальная интенсивность, при которой ухо еще реагирует на звук. Кроме того, для каждой частоты имеется так называемый порог болевых ощущений, т.е. то значение интенсивности звука, которое вызывает боль в ушах. Совокупности точек, отвечающих порогу слышимости, и точек, соответствующих порогу болевых ощущений, образуют на диаграмме (L,ν) две кривые (рис.1), которые пунктиром экстраполированы до пересечения.

Кривая порога слышимости (а), кривая порога боли (б).

Область, ограниченная этими кривыми, называется областью слышимости. Из приведенной диаграммы, в частности, видно, что менее интенсивный звук, соответствующий точке А, будет восприниматься более громким, чем звук более интенсивный, соответствующий точке В, так как точка А более удалена от порога слышимости, чем точка В.

4. Закон Вебера-Фехнера .

Громкость может быть оценена количественно путем сравнения слуховых ощущений от двух источников.

В основе создания шкалы уровней громкости лежит психофизический закон Вебера-Фехнера. Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковое значение).

Применительно к звуку это формулируется так: если интенсивность звука принимает ряд последовательных значений, например, а I 0 , а 2 I 0,

а 3 I 0 ,….(а - некоторый коэффициент, а > 1) и т.д., то им соответствуют ощущения громкости звука Е 0 , 2 Е 0 , 3 Е 0 ….. Математически это означает, что уровень громкости звука пропорционален десятичному логарифму интенсивности звука. Если действуют два звуковых раздражителя с интенсивностями I и I 0, причем I 0 – порог слышимости, то согласно закону Вебера-Фехнера уровень громкости Е и интенсивность I 0 связаны следующим образом:



Е= k lg (I / I 0),

где k – коэффициент пропорциональности.

Если бы коэффициент k был постоянным, то следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале уровней громкостей. В этом случае уровень громкости звука так же, как и интенсивность, выражалась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы: Е= k lg(I / I 0).

Условно считают, что на частоте 1 кГц шкалы уровней громкости и интенсивности звука полностью совпадают, т.е. k = 1 и Е Б = lg (I / I 0). Чтобы различить шкалы громкости и интенсивности звука, децибелы шкалы уровней громкости называют фонами (фон).

Е ф = 10 k lg(I / I 0)

Громкость на других частотах можно измерить, сравнивая исследуемый звук

со звуком частотой 1 кГц.

Кривые равной громкости. Зависимость громкости от частоты колебаний в системе звуковых измерений определяется на основании экспериментальных данных при помощи графиков (рис. 2), которые называются кривыми равной громкости. Эти кривые характеризуют зависимость уровня интенсивности L от частоты ν звука при постоянном уровне громкости. Кривые равной громкости называют изофонамим.

Нижняя изофона соответствует порогу слышимости (Е = 0 фон). Верхняя кривая показывает верхний предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е = 120 фон).

Каждая кривая соответствует одинаковой громкости, но разной интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Звуковые измерения . Для субъективной оценки слуха применяется метод пороговой аудиометрии.

Аудиометрия – метод измерения пороговой интенсивности восприятия звука для разных частот. На специальном приборе (аудиометре) определяется порог слухового ощущения на разных частотах:

L п = 10 lg (I п /I 0),

где I п – пороговая интенсивность звука, которая приводит к возникновению слухового ощущения у испытуемого. Получают кривые – аудиограммы, которые отражают зависимость порога восприятия от частоты тона, т.е. это спектральная характеристика уха на пороге слышимости.

Сравнивая аудиограмму пациента (рис. 3, 2) с нормальной кривой порога слухового ощущения (рис. 3, 1), определяют разность уровней интенсивности ∆L=L 1 –L 2 . L 1 – уровень интенсивности на пороге слышимости нормального уха. L 2 - уровень интенсивности на пороге слышимости исследуемого уха. Кривая для ∆L (рис3, 3) называется потерей слуха.

Аудиограмма в зависимости от характера заболевания имеет вид, отличный от аудиограммы здорового уха.

Шумомеры – приборы для измерения уровня громкости. Шумомер снабжен микрофоном, который превращает акустический сигнал в электрический. Уровень громкости регистрируется стрелочным или цифровым измерительным прибором.

5. Физика слуха: звукопроводящая и звукопринимающая части слухового аппарата. Теории Гельмгольца и Бекеши.

Физика слуха связана с функциями наружного (1,2 рис.4), среднего (3, 4, 5, 6 рис.4) и внутреннего уха (7-13 рис. 4).

Схематическое представление основных элементов слухового аппарата человека: 1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4, 5, 6 – система косточек, 7 – овальное окно (внутреннего уха), 8 – вестибулярная лестница, 9 – круглое окно, 10 – барабанная лестница, 11 – геликотрема, 12 - улитковый канал, 13 - основная (базилярная) мембрана.

По выполняемым функциям в слуховом аппарате человека можно выделить звукопроводящую и звукопринимающую части, основные элементы которых представлены на рис.5.

1 – ушная раковина, 2 – наружный слуховой проход, 3 – барабанная перепонка, 4– система косточек, 5 – улитка, 6 – основная (базилярная мембрана, 7 – рецепторы, 8 – разветвление слухового нерва.

Основная мембрана весьма интересная структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который представлял основную мембрану аналогично ряду построенных струн пианино. По Гельмгольцу, каждый участок базилярной мембраны резонировал на определенную частоту. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонансной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна (7 рис.4) распространяется волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространяется приблизительно на 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм.

Согласно современным представлениям восприятие высоты тона определяется положением максимума колебаний основной мембраны. Эти колебания, воздействуя на рецепторные клетки кортиева органа, вызывают возникновение потенциала действия, который по слуховым нервам передается в кору головного мозга. Головной мозг окончательно обрабатывает поступающие сигналы.



Похожие статьи

  • Пирог «Шарлотка» с сушеными яблоками Пирожки с сушеными яблоками

    Пирог с сушёными яблоками был очень популярен в деревнях. Готовили его обычно в конце зимы и весной, когда убранные на хранение свежие яблоки уже кончались. Пирог с сушёными яблоками очень демократичен - в начинку к яблокам можно...

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...